Photonics Breakthroughs 2024: Large-Viewing-Angle Light Field 3D Display Based on High-Precision Beam Directionality

Light field 3D display technology provides viewers with a highly realistic stereoscopic visual experience and achieves authentic and comfortable glasses-free 3D display effects. In recent years, it has become a prominent research focus in the field of display technology. However, light field 3D disp...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng-Bo Zhao, Yi-Jian Liu, Yuan-Yi Huang, Xiao-Tian Zhang, Yan Xing, Qiong-Hua Wang
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10925629/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Light field 3D display technology provides viewers with a highly realistic stereoscopic visual experience and achieves authentic and comfortable glasses-free 3D display effects. In recent years, it has become a prominent research focus in the field of display technology. However, light field 3D display is still constrained by the challenges of limited viewing angle and resolution, which significantly impede its advancement. This paper presents a large-viewing-angle light field 3D display based on high-precision beam directionality. To enhance the resolution of 3D images within large viewing range, a highly directional light beam with a divergence angle of ±2.7° is achieved by optimizing the display light sources with a compound microlens array. Additionally, a lenticular lens array is employed to reconstruct densely arranged light fields and achieve a large viewing angle. In the experiments, a 100° viewing angle is achieved and it maintains correct geometric occlusion relationships and smooth motion parallax. In addition, the display has a compact architecture and is suitable for the full-color and switchable dynamic light field 3D display with refresh rate of 30 Hz. We expect the proposed display will contribute to the further development of light field 3D displays.
ISSN:1943-0655