PSL-IoD: PUF-Based Secure Last-Mile Drone Delivery in Supply Chain Management

The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad D. Alahmadi, Ahmed S. Alzahrani, Azeem Irshad, Shehzad Ashraf Chaudhry
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2143
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package deliveries and tracking. There have been a lot of recent research proposals on various aspects of last-mile delivery systems for drones in particular. Although drones have largely changed the logistics landscape, there are many concerns regarding security and privacy posed to drones due to their open and vulnerable nature. The security and privacy of involved stakeholders needs to be preserved across the whole chain of Supply Chain Management (SCM) till delivery. Many earlier studies addressed this concern, however with efficiency limitations. We propose a Physical Uncloneable Function (PUF)-based secure authentication protocol (PSL-IoD) using symmetric key operations for reliable last-mile drone delivery in SCM. PSL-IoD ensures mutual authenticity, forward secrecy, and privacy for the stakeholders. Moreover, it is protected from machine learning attacks and drone-related physical capture threats due to embedded PUF installations along with secure design of the protocol. The PSL-IoD is formally analyzed through rigorous security assessments based on the Real-or-Random (RoR) model. The PSL-IoD supports 26.71% of enhanced security traits compared to other comparative studies. The performance evaluation metrics exhibit convincing findings in terms of efficient computation and communication along with enhanced security features, making it viable for practical implementations.
ISSN:2227-7390