Loop group schemes and Abhyankar’s lemma
We define the notion of loop reductive group schemes defined over the localization of a regular henselian ring $A$ at a strict normal crossing divisor $D$. We provide a criterion for the existence of parabolic subgroups of a given type.
Saved in:
Main Author: | Gille, Philippe |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-03-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.545/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Intersection of parabolic subgroups in Euclidean braid groups: a short proof
by: Cumplido, María, et al.
Published: (2024-11-01) -
Fuzzy congruences on groups and rings
by: Marouf A. Samhan, et al.
Published: (1994-01-01) -
A note on quantum subgroups of free quantum groups
by: Hoshino, Mao, et al.
Published: (2024-11-01) -
On absolutely invertibles
by: Francisco Javier García-Pacheco, et al.
Published: (2024-12-01) -
On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
by: Ali Al Khabyah, et al.
Published: (2025-01-01)