Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency

<p>Various aerosols, including mineral dust, soot, and biological particles, can act as ice nuclei, initiating the freezing of supercooled cloud droplets. Cloud droplet freezing significantly impacts cloud properties and, consequently, weather and climate. Some biological ice nuclei exhibit ex...

Full description

Saved in:
Bibliographic Details
Main Authors: F. Wieland, N. Bothen, R. Schwidetzky, T. M. Seifried, P. Bieber, U. Pöschl, K. Meister, M. Bonn, J. Fröhlich-Nowoisky, H. Grothe
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/22/103/2025/bg-22-103-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850082476045631488
author F. Wieland
F. Wieland
N. Bothen
R. Schwidetzky
T. M. Seifried
T. M. Seifried
P. Bieber
P. Bieber
U. Pöschl
K. Meister
K. Meister
M. Bonn
J. Fröhlich-Nowoisky
H. Grothe
author_facet F. Wieland
F. Wieland
N. Bothen
R. Schwidetzky
T. M. Seifried
T. M. Seifried
P. Bieber
P. Bieber
U. Pöschl
K. Meister
K. Meister
M. Bonn
J. Fröhlich-Nowoisky
H. Grothe
author_sort F. Wieland
collection DOAJ
description <p>Various aerosols, including mineral dust, soot, and biological particles, can act as ice nuclei, initiating the freezing of supercooled cloud droplets. Cloud droplet freezing significantly impacts cloud properties and, consequently, weather and climate. Some biological ice nuclei exhibit exceptionally high nucleation temperatures close to 0 °C. Ice-nucleating macromolecules (INMs) found on pollen are typically not considered among the most active ice nuclei. Still, they can be highly abundant, especially for species such as <i>Betula pendula</i>, a widespread birch tree species in the boreal forest. Recent studies have shown that certain tree-derived INMs exhibit ice nucleation activity above <span class="inline-formula">−</span>10 °C, suggesting they could play a more significant role in atmospheric processes than previously understood. Our study reveals that three distinct INM classes active at <span class="inline-formula">−</span>8.7, <span class="inline-formula">−</span>15.7, and <span class="inline-formula">−</span>17.4 °C are present in <i>B. pendula</i>. Freeze drying and freeze–thaw cycles noticeably alter their ice nucleation capability, and the results of heat treatment, size, and chemical analysis indicate that INM classes correspond to size-varying aggregates, with larger aggregates nucleating ice at higher temperatures, in agreement with previous studies on fungal and bacterial ice nucleators. Our findings suggest that <i>B. pendula</i> INMs are potentially important for atmospheric ice nucleation because of their high prevalence and nucleation temperatures.</p>
format Article
id doaj-art-309c9796b4ad4cc8992fa793cf5e67f9
institution DOAJ
issn 1726-4170
1726-4189
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj-art-309c9796b4ad4cc8992fa793cf5e67f92025-08-20T02:44:32ZengCopernicus PublicationsBiogeosciences1726-41701726-41892025-01-012210311510.5194/bg-22-103-2025Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiencyF. Wieland0F. Wieland1N. Bothen2R. Schwidetzky3T. M. Seifried4T. M. Seifried5P. Bieber6P. Bieber7U. Pöschl8K. Meister9K. Meister10M. Bonn11J. Fröhlich-Nowoisky12H. Grothe13Institute of Materials Chemistry, TU Wien, 1060 Vienna, AustriaMultiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, GermanyMultiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, GermanyMolecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, GermanyInstitute of Materials Chemistry, TU Wien, 1060 Vienna, AustriaDepartment of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, CanadaInstitute of Materials Chemistry, TU Wien, 1060 Vienna, AustriaDepartment of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, CanadaMultiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, GermanyMolecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, GermanyDepartment of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USAMolecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, GermanyMultiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, GermanyInstitute of Materials Chemistry, TU Wien, 1060 Vienna, Austria<p>Various aerosols, including mineral dust, soot, and biological particles, can act as ice nuclei, initiating the freezing of supercooled cloud droplets. Cloud droplet freezing significantly impacts cloud properties and, consequently, weather and climate. Some biological ice nuclei exhibit exceptionally high nucleation temperatures close to 0 °C. Ice-nucleating macromolecules (INMs) found on pollen are typically not considered among the most active ice nuclei. Still, they can be highly abundant, especially for species such as <i>Betula pendula</i>, a widespread birch tree species in the boreal forest. Recent studies have shown that certain tree-derived INMs exhibit ice nucleation activity above <span class="inline-formula">−</span>10 °C, suggesting they could play a more significant role in atmospheric processes than previously understood. Our study reveals that three distinct INM classes active at <span class="inline-formula">−</span>8.7, <span class="inline-formula">−</span>15.7, and <span class="inline-formula">−</span>17.4 °C are present in <i>B. pendula</i>. Freeze drying and freeze–thaw cycles noticeably alter their ice nucleation capability, and the results of heat treatment, size, and chemical analysis indicate that INM classes correspond to size-varying aggregates, with larger aggregates nucleating ice at higher temperatures, in agreement with previous studies on fungal and bacterial ice nucleators. Our findings suggest that <i>B. pendula</i> INMs are potentially important for atmospheric ice nucleation because of their high prevalence and nucleation temperatures.</p>https://bg.copernicus.org/articles/22/103/2025/bg-22-103-2025.pdf
spellingShingle F. Wieland
F. Wieland
N. Bothen
R. Schwidetzky
T. M. Seifried
T. M. Seifried
P. Bieber
P. Bieber
U. Pöschl
K. Meister
K. Meister
M. Bonn
J. Fröhlich-Nowoisky
H. Grothe
Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
Biogeosciences
title Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
title_full Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
title_fullStr Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
title_full_unstemmed Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
title_short Aggregation of ice-nucleating macromolecules from <i>Betula pendula</i> pollen determines ice nucleation efficiency
title_sort aggregation of ice nucleating macromolecules from i betula pendula i pollen determines ice nucleation efficiency
url https://bg.copernicus.org/articles/22/103/2025/bg-22-103-2025.pdf
work_keys_str_mv AT fwieland aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT fwieland aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT nbothen aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT rschwidetzky aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT tmseifried aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT tmseifried aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT pbieber aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT pbieber aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT uposchl aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT kmeister aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT kmeister aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT mbonn aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT jfrohlichnowoisky aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency
AT hgrothe aggregationoficenucleatingmacromoleculesfromibetulapendulaipollendeterminesicenucleationefficiency