<i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection

The spoilage of wine caused by <i>Brettanomyces bruxellensis</i> and <i>Hanseniaspora uvarum</i> poses a significant challenge for winemakers, necessitating the development of effective and reliable strategies to control the growth of these yeasts, such as grape must bioprote...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatima El Dana, Vanessa David, Mohammad Ali Hallal, Raphaëlle Tourdot-Maréchal, Salem Hayar, Marie-Charlotte Colosio, Hervé Alexandre
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/9/1462
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850032172521488384
author Fatima El Dana
Vanessa David
Mohammad Ali Hallal
Raphaëlle Tourdot-Maréchal
Salem Hayar
Marie-Charlotte Colosio
Hervé Alexandre
author_facet Fatima El Dana
Vanessa David
Mohammad Ali Hallal
Raphaëlle Tourdot-Maréchal
Salem Hayar
Marie-Charlotte Colosio
Hervé Alexandre
author_sort Fatima El Dana
collection DOAJ
description The spoilage of wine caused by <i>Brettanomyces bruxellensis</i> and <i>Hanseniaspora uvarum</i> poses a significant challenge for winemakers, necessitating the development of effective and reliable strategies to control the growth of these yeasts, such as grape must bioprotection. Despite evidence that certain microorganisms can inhibit the growth of <i>Brettanomyces bruxellensis</i> and <i>Hanseniaspora uvarum</i>, the specific mechanisms driving this inhibition remain unclear. The primary objective of this study is to elucidate the underlying mechanisms responsible for this inhibitory effect. We analyzed one <i>Metschnikowia pulcherrima</i> (Mp2) and two <i>Lachancea thermotolerans</i> (Lt29 and Lt45) strains, all of which demonstrated significant killing and inhibitory effects on <i>Brettanomyces bruxellensis</i> (B1 and B250) and <i>Hanseniaspora uvarum</i> (Hu3137) in synthetic must at pH 3.5 and 22 °C. The effectiveness of these two strains exhibited varying inhibition kinetics. The strains were monitored for growth and metabolite production (L-lactic acid, ethanol, and acetic acid) in both single and co-cultures. The low levels of these metabolites did not account for the observed bioprotective effect, indicating a different mechanism at play, especially given the different growth profiles observed with added L-lactic acid and ethanol compared to direct bioprotectant addition. Following the production, purification, and quantification of killer toxins, different concentrations of toxins were tested, showing that the semi-purified Mp2Kt, Lt29Kt, and Lt45Kt toxins controlled the growth of both spoilage yeasts in a dose-dependent manner. These bioprotectant strains also showed compatibility with <i>Saccharomyces cerevisiae</i> in co-cultures, suggesting their potential use alongside commercial starter cultures.
format Article
id doaj-art-3040d74e2eab4f968117b3d935fc9aaf
institution DOAJ
issn 2304-8158
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Foods
spelling doaj-art-3040d74e2eab4f968117b3d935fc9aaf2025-08-20T02:58:44ZengMDPI AGFoods2304-81582025-04-01149146210.3390/foods14091462<i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must BioprotectionFatima El Dana0Vanessa David1Mohammad Ali Hallal2Raphaëlle Tourdot-Maréchal3Salem Hayar4Marie-Charlotte Colosio5Hervé Alexandre6UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, FranceUMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, FranceDepartment of Plant Protection, Faculty of Agronomy, Lebanese University, Dekwaneh-Matn 90775, LebanonUMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, FranceDoctoral School of Science and Technology, Platform for Research and Analysis in Environmental Science (EDST-PRASE), Lebanese University, Rafik Hariri Campus, Hadat-Baabda 1003, LebanonInstitut Français de la Vigne et du Vin (IFV), 44120 Nantes, FranceUMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Europe, L’Institut Agro Dijon, INRAE, Laboratoire AFIM-IUVV, 21000 Dijon, FranceThe spoilage of wine caused by <i>Brettanomyces bruxellensis</i> and <i>Hanseniaspora uvarum</i> poses a significant challenge for winemakers, necessitating the development of effective and reliable strategies to control the growth of these yeasts, such as grape must bioprotection. Despite evidence that certain microorganisms can inhibit the growth of <i>Brettanomyces bruxellensis</i> and <i>Hanseniaspora uvarum</i>, the specific mechanisms driving this inhibition remain unclear. The primary objective of this study is to elucidate the underlying mechanisms responsible for this inhibitory effect. We analyzed one <i>Metschnikowia pulcherrima</i> (Mp2) and two <i>Lachancea thermotolerans</i> (Lt29 and Lt45) strains, all of which demonstrated significant killing and inhibitory effects on <i>Brettanomyces bruxellensis</i> (B1 and B250) and <i>Hanseniaspora uvarum</i> (Hu3137) in synthetic must at pH 3.5 and 22 °C. The effectiveness of these two strains exhibited varying inhibition kinetics. The strains were monitored for growth and metabolite production (L-lactic acid, ethanol, and acetic acid) in both single and co-cultures. The low levels of these metabolites did not account for the observed bioprotective effect, indicating a different mechanism at play, especially given the different growth profiles observed with added L-lactic acid and ethanol compared to direct bioprotectant addition. Following the production, purification, and quantification of killer toxins, different concentrations of toxins were tested, showing that the semi-purified Mp2Kt, Lt29Kt, and Lt45Kt toxins controlled the growth of both spoilage yeasts in a dose-dependent manner. These bioprotectant strains also showed compatibility with <i>Saccharomyces cerevisiae</i> in co-cultures, suggesting their potential use alongside commercial starter cultures.https://www.mdpi.com/2304-8158/14/9/1462bioprotectionkiller toxin<i>Metschnikowia pulcherrima</i>Lachancea thermotoleransmetabolite analyses<i>Brettanomyces bruxellensis</i>
spellingShingle Fatima El Dana
Vanessa David
Mohammad Ali Hallal
Raphaëlle Tourdot-Maréchal
Salem Hayar
Marie-Charlotte Colosio
Hervé Alexandre
<i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
Foods
bioprotection
killer toxin
<i>Metschnikowia pulcherrima</i>
Lachancea thermotolerans
metabolite analyses
<i>Brettanomyces bruxellensis</i>
title <i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
title_full <i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
title_fullStr <i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
title_full_unstemmed <i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
title_short <i>Metschnikowia pulcherrima</i> and <i>Lachancea thermotolerans</i> Killer Toxins: Contribution to Must Bioprotection
title_sort i metschnikowia pulcherrima i and i lachancea thermotolerans i killer toxins contribution to must bioprotection
topic bioprotection
killer toxin
<i>Metschnikowia pulcherrima</i>
Lachancea thermotolerans
metabolite analyses
<i>Brettanomyces bruxellensis</i>
url https://www.mdpi.com/2304-8158/14/9/1462
work_keys_str_mv AT fatimaeldana imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT vanessadavid imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT mohammadalihallal imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT raphaelletourdotmarechal imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT salemhayar imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT mariecharlottecolosio imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection
AT hervealexandre imetschnikowiapulcherrimaiandilachanceathermotoleransikillertoxinscontributiontomustbioprotection