A Novel Multi-Agent-Based Approach for Train Rescheduling in Large-Scale Railway Networks
Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hinder...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/14/7996 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Real-time train rescheduling is a widely used strategy to minimize knock-on delays in railway networks. While recent research has introduced intelligent solutions to railway traffic management, the tight interdependence of train timetables and the intrinsic complexity of railway networks have hindered the scalability of these approaches to large-scale systems. This paper proposes a multi-agent system (MAS) that addresses these challenges by decomposing the network into single-junction levels, significantly reducing the search space for real-time rescheduling. The MAS employs a Condorcet voting-based collaborative approach to ensure global feasibility and prevent overly localized optimization by individual junction agents. This decentralized approach enhances both the quality and scalability of train rescheduling solutions. We tested the MAS on a railway network in the UK and compared its performance with the First-Come-First-Served (FCFS) and Timetable Order Enforced (TTOE) routing methods. The computational results show that the MAS significantly outperforms FCFS and TTOE in the tested scenarios, yielding up to a 34.11% increase in network capacity as measured by the defined objective function, thus improving network line capacity. |
|---|---|
| ISSN: | 2076-3417 |