A Novel FS-GAN-Based Anomaly Detection Approach for Smart Manufacturing

In this study, we present the few-shot generative adversarial network (FS-GAN) model, which integrates few-shot learning and a generative adversarial network with an unsupervised learning approach (AnoGAN) to address the challenges of anomaly detection in smart-factory manufacturing environments. Ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Tae-yong Kim, Jieun Lee, Seokhyun Gong, Jaehoon Lim, Dowan Kim, Jongpil Jeong
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/1/21
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we present the few-shot generative adversarial network (FS-GAN) model, which integrates few-shot learning and a generative adversarial network with an unsupervised learning approach (AnoGAN) to address the challenges of anomaly detection in smart-factory manufacturing environments. Manufacturing processes often encounter malfunctions or defective parts that disrupt production and compromise product quality. However, collecting and labeling sufficient data to detect anomalies is time-intensive, and abnormal data are rare, leading to data imbalances. The FS-GAN model leverages few-shot learning to enable accurate predictions with minimal data and uses the generative capabilities of AnoGAN to mitigate the scarcity of abnormal data by generating synthetic normal data. Experimental results demonstrate that FS-GAN outperforms existing models in terms of accuracy and learning speed, even with limited datasets, effectively addressing the data imbalance problem inherent in manufacturing. The model reduces dependency on extensive data collection and labeling efforts, making it suitable for real-world applications. Through reliable and efficient anomaly detection, FS-GAN contributes to production reliability, product quality, and operational efficiency in smart factories. This study highlights the potential of FS-GAN to provide a cost-effective and high-performance solution to the challenges of anomaly detection in the manufacturing industry.
ISSN:2075-1702