Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling
Abstract Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal int...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-01-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-56163-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability. We report a strategy to create printable, high-performance liquid-infused nanostructured composites, comprising a mechanically soft and thermally conductive double-sided Cu nanowire array scaffold infused with a customized thermal-bridge liquid that suppresses contact thermal resistance. The liquid infusion concept is versatile for a broad range of thermal interface applications. Remarkably, the liquid metal infused nanostructured composite exhibits an ultra-low thermal resistance <1 mm² K W-1 at interface, outperforming state-of-the-art thermal interface materials on chip-cooling. The high reliability of the nanostructured composites enables undegraded performance through extreme temperature cycling. We envision liquid-infused nanostructured composites as a universal thermal interface solution for cooling applications in data centers, GPU/CPU systems, solid-state lasers, and LEDs. |
|---|---|
| ISSN: | 2041-1723 |