Nature's best vs. bruised: A veggie edibility evaluation databaseMendeley Data
In the realm of evaluating vegetable freshness, automated methods that assess external morphology, texture, and colour have emerged as efficient and cost-effective tools. These methods play a crucial role in sorting high-quality vegetables for both export and local consumption, significantly impacti...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | Data in Brief |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S235234092500215X |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In the realm of evaluating vegetable freshness, automated methods that assess external morphology, texture, and colour have emerged as efficient and cost-effective tools. These methods play a crucial role in sorting high-quality vegetables for both export and local consumption, significantly impacting the revenue of the food industry worldwide. Researchers have recognized the importance of this area, leading to the development of various automated techniques, particularly leveraging advanced deep learning technologies to categorize vegetables into specific classes. However, the effectiveness of these methods heavily relies on the databases used for training and validation, posing a challenge due to the lack of suitable datasets. |
|---|---|
| ISSN: | 2352-3409 |