Prosthetic Hand Based on Human Hand Anatomy Controlled by Surface Electromyography and Artificial Neural Network

Humans have a complex way of expressing their intuitive intentions in real gestures. That is why many gesture detection and recognition techniques have been studied and developed. There are many methods of human hand signal reading, such as those using electroencephalography, electrocorticography, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Larisa Dunai, Isabel Seguí Verdú, Dinu Turcanu, Viorel Bostan
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/1/21
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Humans have a complex way of expressing their intuitive intentions in real gestures. That is why many gesture detection and recognition techniques have been studied and developed. There are many methods of human hand signal reading, such as those using electroencephalography, electrocorticography, and electromyography, as well as methods for gesture recognition. In this paper, we present a method based on real-time surface electroencephalography hand-based gesture recognition using a multilayer neural network. For this purpose, the sEMG signals have been amplified, filtered and sampled; then, the data have been segmented, feature extracted and classified for each gesture. To validate the method, 100 signals for three gestures with 64 samples each signal have been recorded from 2 users with OYMotion sensors and 100 signals for three gestures from 4 users with the MyWare sensors. These signals were used for feature extraction and classification using an artificial neuronal network. The model converges after 10 sessions, achieving 98% accuracy. As a result, an algorithm was developed that aimed to recognize two specific gestures (handling a bottle and pointing with the index finger) in real time with 95% accuracy.
ISSN:2227-7080