Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis

The rapid industrialization and urbanization in China have exacerbated air pollution, particularly PM<sub>2.5</sub>, posing significant threats to public health. This study focused on Lianyungang, an industrial city, to analyze the spatiotemporal variations in PM<sub>2.5</sub>...

Full description

Saved in:
Bibliographic Details
Main Authors: Xue Li, Haihong He, Dewei Wang, Wenli Qiao, Chunli Liu, Yiming Sun, Lulu Li, Shuting Han, Guozhen Zha
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/23/4495
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846123892619345920
author Xue Li
Haihong He
Dewei Wang
Wenli Qiao
Chunli Liu
Yiming Sun
Lulu Li
Shuting Han
Guozhen Zha
author_facet Xue Li
Haihong He
Dewei Wang
Wenli Qiao
Chunli Liu
Yiming Sun
Lulu Li
Shuting Han
Guozhen Zha
author_sort Xue Li
collection DOAJ
description The rapid industrialization and urbanization in China have exacerbated air pollution, particularly PM<sub>2.5</sub>, posing significant threats to public health. This study focused on Lianyungang, an industrial city, to analyze the spatiotemporal variations in PM<sub>2.5</sub> concentrations from 2000 to 2023 and identify the influencing factors. Utilizing high-resolution PM<sub>2.5</sub> data from the ChinaHighPM<sub>2.5</sub> dataset and ERA5 meteorological data, the study employed Empirical Orthogonal Function (EOF) analysis to capture spatial variability and the Bayesian Estimator of Abrupt Change Seasonal and Trend (BEAST) to assess long-term trends and abrupt changes. The key findings include a marked seasonal pattern, with higher PM<sub>2.5</sub> levels during the winter months and lower concentrations in the summer, primarily driven by temperature, humidity, and precipitation. A significant decline in PM<sub>2.5</sub> levels was observed after 2014, following the implementation of pollution control measures. The study underscores the importance of continued environmental regulation and green technology adoption in mitigating air pollution in rapidly industrializing cities. This research provides a comprehensive analysis of PM<sub>2.5</sub> trends and highlights the critical role of natural and human factors, contributing valuable insights for policymakers and researchers aiming to improve air quality.
format Article
id doaj-art-2f88a5930c5643829bf9cfaf9889a842
institution Kabale University
issn 2072-4292
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj-art-2f88a5930c5643829bf9cfaf9889a8422024-12-13T16:31:03ZengMDPI AGRemote Sensing2072-42922024-11-011623449510.3390/rs16234495Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional AnalysisXue Li0Haihong He1Dewei Wang2Wenli Qiao3Chunli Liu4Yiming Sun5Lulu Li6Shuting Han7Guozhen Zha8School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, ChinaSchool of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, ChinaLianyungang Branch of Jiangsu Hydrology and Water Resource Survey Bureau, Lianyungang 222004, ChinaJiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, ChinaMarine College, Shandong University, Weihai 264209, ChinaSchool of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, ChinaSchool of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, ChinaSchool of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, ChinaSchool of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, ChinaThe rapid industrialization and urbanization in China have exacerbated air pollution, particularly PM<sub>2.5</sub>, posing significant threats to public health. This study focused on Lianyungang, an industrial city, to analyze the spatiotemporal variations in PM<sub>2.5</sub> concentrations from 2000 to 2023 and identify the influencing factors. Utilizing high-resolution PM<sub>2.5</sub> data from the ChinaHighPM<sub>2.5</sub> dataset and ERA5 meteorological data, the study employed Empirical Orthogonal Function (EOF) analysis to capture spatial variability and the Bayesian Estimator of Abrupt Change Seasonal and Trend (BEAST) to assess long-term trends and abrupt changes. The key findings include a marked seasonal pattern, with higher PM<sub>2.5</sub> levels during the winter months and lower concentrations in the summer, primarily driven by temperature, humidity, and precipitation. A significant decline in PM<sub>2.5</sub> levels was observed after 2014, following the implementation of pollution control measures. The study underscores the importance of continued environmental regulation and green technology adoption in mitigating air pollution in rapidly industrializing cities. This research provides a comprehensive analysis of PM<sub>2.5</sub> trends and highlights the critical role of natural and human factors, contributing valuable insights for policymakers and researchers aiming to improve air quality.https://www.mdpi.com/2072-4292/16/23/4495PM<sub>2.5</sub>Lianyungangspatiotemporal variationsChinaHighPM<sub>2.5</sub>EOF
spellingShingle Xue Li
Haihong He
Dewei Wang
Wenli Qiao
Chunli Liu
Yiming Sun
Lulu Li
Shuting Han
Guozhen Zha
Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
Remote Sensing
PM<sub>2.5</sub>
Lianyungang
spatiotemporal variations
ChinaHighPM<sub>2.5</sub>
EOF
title Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
title_full Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
title_fullStr Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
title_full_unstemmed Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
title_short Spatiotemporal Characteristics and Influencing Factors of PM<sub>2.5</sub> Levels in Lianyungang: Insights from a Multidimensional Analysis
title_sort spatiotemporal characteristics and influencing factors of pm sub 2 5 sub levels in lianyungang insights from a multidimensional analysis
topic PM<sub>2.5</sub>
Lianyungang
spatiotemporal variations
ChinaHighPM<sub>2.5</sub>
EOF
url https://www.mdpi.com/2072-4292/16/23/4495
work_keys_str_mv AT xueli spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT haihonghe spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT deweiwang spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT wenliqiao spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT chunliliu spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT yimingsun spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT lululi spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT shutinghan spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis
AT guozhenzha spatiotemporalcharacteristicsandinfluencingfactorsofpmsub25sublevelsinlianyunganginsightsfromamultidimensionalanalysis