Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3
On the 16th of April, 2016, a strong earthquake with M 7,3 occurred in the Kumamoto prefecture (Kyushu, Japan). This earthquake is the strongest in the last 30 years in this area. For a day before the main shock, two foreshocks with M 6,4 were registered. For seven days after the main shock, aftersh...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | Russian |
| Published: |
Sergo Ordzhonikidze Russian State University for Geological Prospecting
2017-12-01
|
| Series: | Известия высших учебных заведений: Геология и разведка |
| Subjects: | |
| Online Access: | https://www.geology-mgri.ru/jour/article/view/269 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849402216517992448 |
|---|---|
| author | V. N. Morozov A. I. Manevich |
| author_facet | V. N. Morozov A. I. Manevich |
| author_sort | V. N. Morozov |
| collection | DOAJ |
| description | On the 16th of April, 2016, a strong earthquake with M 7,3 occurred in the Kumamoto prefecture (Kyushu, Japan). This earthquake is the strongest in the last 30 years in this area. For a day before the main shock, two foreshocks with M 6,4 were registered. For seven days after the main shock, aftershocks activity spread to the north-east and south-west, most of the hypocentres of the aftershocks with M 6,4 were localized within the seismogenic layer in the depth interval from 5 to 10 km. The authors have modeled a stress-strain state (SSS) of the epicentral area be fore the earthquake and after it (after the formation of the main fault). For this purpose, a software package is used, that allows 2-D formulation (plane strain condition), for modeling SSS block heterogeneous geological environment, disrupted by a system of tectonic faults. The faults are modeled in the form of extended zones of the dispersed geomaterial, which elastic modulus are significantly lower than the elastic modulus of the environmental media. A structural-tectonic scheme of the Kumamoto earthquake area is used. An analysis of the results of SSS modeling has been done for the area 30x40 km before and after the earthquake. It is shown that the area and magnitude of the stress intensity in anomalous zones are the predictive signs of the location and intensity of a possible strong crustal earthquake, and the vector of the rapid decrease in the potential energy of deformation could be a guide for the most probable direction of tectonic rupture during a crustal earthquake. The results received can be useful in a deterministic approach to seismic hazard assessment and carrying out the geophysical observations focused on the forecast of the strong crustal earthquakes in the continental areas. |
| format | Article |
| id | doaj-art-2f7b1c053f164df78633f97efb50576e |
| institution | Kabale University |
| issn | 0016-7762 2618-8708 |
| language | Russian |
| publishDate | 2017-12-01 |
| publisher | Sergo Ordzhonikidze Russian State University for Geological Prospecting |
| record_format | Article |
| series | Известия высших учебных заведений: Геология и разведка |
| spelling | doaj-art-2f7b1c053f164df78633f97efb50576e2025-08-20T03:37:37ZrusSergo Ordzhonikidze Russian State University for Geological ProspectingИзвестия высших учебных заведений: Геология и разведка0016-77622618-87082017-12-0106485410.32454/0016-7762-2017-6-48-54269Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3V. N. Morozov0A. I. Manevich1Geophysical Center of RASGeophysical Center of RASOn the 16th of April, 2016, a strong earthquake with M 7,3 occurred in the Kumamoto prefecture (Kyushu, Japan). This earthquake is the strongest in the last 30 years in this area. For a day before the main shock, two foreshocks with M 6,4 were registered. For seven days after the main shock, aftershocks activity spread to the north-east and south-west, most of the hypocentres of the aftershocks with M 6,4 were localized within the seismogenic layer in the depth interval from 5 to 10 km. The authors have modeled a stress-strain state (SSS) of the epicentral area be fore the earthquake and after it (after the formation of the main fault). For this purpose, a software package is used, that allows 2-D formulation (plane strain condition), for modeling SSS block heterogeneous geological environment, disrupted by a system of tectonic faults. The faults are modeled in the form of extended zones of the dispersed geomaterial, which elastic modulus are significantly lower than the elastic modulus of the environmental media. A structural-tectonic scheme of the Kumamoto earthquake area is used. An analysis of the results of SSS modeling has been done for the area 30x40 km before and after the earthquake. It is shown that the area and magnitude of the stress intensity in anomalous zones are the predictive signs of the location and intensity of a possible strong crustal earthquake, and the vector of the rapid decrease in the potential energy of deformation could be a guide for the most probable direction of tectonic rupture during a crustal earthquake. The results received can be useful in a deterministic approach to seismic hazard assessment and carrying out the geophysical observations focused on the forecast of the strong crustal earthquakes in the continental areas.https://www.geology-mgri.ru/jour/article/view/269modelingstress-strain state, sssstrong tectonic earthquakesearthquakeaftershocksforecast of earthquakeskumamoto earthquake |
| spellingShingle | V. N. Morozov A. I. Manevich Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 Известия высших учебных заведений: Геология и разведка modeling stress-strain state, sss strong tectonic earthquakes earthquake aftershocks forecast of earthquakes kumamoto earthquake |
| title | Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 |
| title_full | Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 |
| title_fullStr | Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 |
| title_full_unstemmed | Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 |
| title_short | Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3 |
| title_sort | modeling of the stress strain state in the earthquake epicenter area kumamoto earthquake japan 16 04 2016 m 7 3 |
| topic | modeling stress-strain state, sss strong tectonic earthquakes earthquake aftershocks forecast of earthquakes kumamoto earthquake |
| url | https://www.geology-mgri.ru/jour/article/view/269 |
| work_keys_str_mv | AT vnmorozov modelingofthestressstrainstateintheearthquakeepicenterareakumamotoearthquakejapan16042016m73 AT aimanevich modelingofthestressstrainstateintheearthquakeepicenterareakumamotoearthquakejapan16042016m73 |