Undecimated Lifting Wavelet Packet Transform with Boundary Treatment for Machinery Incipient Fault Diagnosis

Effective signal processing in fault detection and diagnosis (FDD) is an important measure to prevent failure and accidents of machinery. To address the end distortion and frequency aliasing issues in conventional lifting wavelet transform, a Volterra series assisted undecimated lifting wavelet pack...

Full description

Saved in:
Bibliographic Details
Main Authors: Lixiang Duan, Yangshen Wang, Jinjiang Wang, Laibin Zhang, Jinglong Chen
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2016/9792807
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effective signal processing in fault detection and diagnosis (FDD) is an important measure to prevent failure and accidents of machinery. To address the end distortion and frequency aliasing issues in conventional lifting wavelet transform, a Volterra series assisted undecimated lifting wavelet packet transform (ULWPT) is investigated for machinery incipient fault diagnosis. Undecimated lifting wavelet packet transform is firstly formulated to eliminate the frequency aliasing issue in traditional lifting wavelet packet transform. Next, Volterra series, as a boundary treatment method, is used to preprocess the signal to suppress the end distortion in undecimated lifting wavelet packet transform. Finally, the decomposed wavelet coefficients are trimmed to the original length as the signal of interest for machinery incipient fault detection. Experimental study on a reciprocating compressor is performed to demonstrate the effectiveness of the presented method. The results show that the presented method outperforms the conventional approach by dramatically enhancing the weak defect feature extraction for reciprocating compressor valve fault diagnosis.
ISSN:1070-9622
1875-9203