Engineered Panax notoginseng polysaccharide micelles inhibit macrophage polarization and delay the progression of rheumatoid arthritis via JAK2-STAT3 signaling pathway
Abstract Background The imbalance of macrophage polarization plays a pivotal role in the progression of rheumatoid arthritis (RA). Reprogramming macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is considered a promising therapeutic strategy. Methods To address...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-07-01
|
| Series: | Journal of Nanobiotechnology |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12951-025-03576-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background The imbalance of macrophage polarization plays a pivotal role in the progression of rheumatoid arthritis (RA). Reprogramming macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is considered a promising therapeutic strategy. Methods To address this challenge, Panax notoginseng polysaccharides (PNP) with varying molecular weights were chemically conjugated with deoxycholic acid (DC) to obtain amphiphilic conjugates (PNP-DC), which self-assembled into micelles (PNP-Ms). After screening for optimal molecular weight, folic acid (FA) was introduced onto the micelle surface, and Polyphyllin I (PPI) was encapsulated to form FA-modified, PPI-loaded micelles (FA-PPI-Ms) with macrophage-targeting capability. Results FA-PPI-Ms showed enhanced cellular uptake via FA receptor–mediated endocytosis and effectively eliminated reactive oxygen species (ROS), reduced inflammatory cytokine production, and exhibited good biosafety. In vivo, FA-PPI-Ms significantly alleviated joint swelling and inflammation in RA rat models. Mechanistic studies based on RNA sequencing and experimental validation revealed that FA-PPI-Ms suppressed the JAK2/STAT3 signaling pathway, thereby promoting M2 macrophage polarization and restoring the M1/M2 balance. Conclusion This study presents a novel FA-PPI-Ms delivery system for targeted macrophages. By modulating polarization through inhibition of JAK2/STAT3 signaling, the system offers a promising therapeutic strategy for RA and potentially other inflammatory diseases. |
|---|---|
| ISSN: | 1477-3155 |