Super-Resolution Reconstruction of LiDAR Images Based on an Adaptive Contour Closure Algorithm over 10 km

Reflective Tomography LiDAR (RTL) imaging, an innovative LiDAR technology, offers the significant advantage of an imaging resolution independent of detection distance and receiving optical aperture, evolving from Computed Tomography (CT) principles. However, distinct from transmissive imaging, RTL r...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Shi, Xinyuan Zhang, Fei Han, Yicheng Wang, Shilong Xu, Xing Yang, Yihua Hu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/6/569
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reflective Tomography LiDAR (RTL) imaging, an innovative LiDAR technology, offers the significant advantage of an imaging resolution independent of detection distance and receiving optical aperture, evolving from Computed Tomography (CT) principles. However, distinct from transmissive imaging, RTL requires precise alignment of multi-angle echo data around the target’s rotation center before image reconstruction. This paper presents an adaptive contour closure algorithm for automated multi-angle echo data registration in RTL. A 10.38 km remote RTL imaging experiment validates the algorithm’s efficacy, showing that it improves the quality factor of reconstructed images by over 23% and effectively suppresses interference from target/detector jitter, laser pulse transmission/reception fluctuations, and atmospheric turbulence. These results support the development of advanced space target perception capabilities and drive the transition of space-based LiDAR from “point” measurements to “volumetric” perception, marking a crucial advancement in space exploration and surveillance.
ISSN:2304-6732