The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field

Let $K$ be a field and $V$ be a set of rank one valuations of $K$. The corresponding Tate–Shafarevich group of a $K$-torus $T$ is $\Sha (T, V) = \ker (H^1(K, T) \rightarrow \prod _{v\,\in \,V} H^1(K_v, T))$. We prove that if $K = k(X)$ is the function field of a smooth geometrically integral quasi-p...

Full description

Saved in:
Bibliographic Details
Main Authors: Rapinchuk, Andrei, Rapinchuk, Igor
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.588/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206217597779968
author Rapinchuk, Andrei
Rapinchuk, Igor
author_facet Rapinchuk, Andrei
Rapinchuk, Igor
author_sort Rapinchuk, Andrei
collection DOAJ
description Let $K$ be a field and $V$ be a set of rank one valuations of $K$. The corresponding Tate–Shafarevich group of a $K$-torus $T$ is $\Sha (T, V) = \ker (H^1(K, T) \rightarrow \prod _{v\,\in \,V} H^1(K_v, T))$. We prove that if $K = k(X)$ is the function field of a smooth geometrically integral quasi-projective variety over a field $k$ of characteristic 0 and $V$ is the set of discrete valuations of $K$ associated with prime divisors on $X$, then for any torus $T$ defined over the base field $k$, the group $\Sha (T, V)$ is finite in the following situations: (1) $k$ is finitely generated and $X(k) \ne \emptyset $; (2) $k$ is a number field.
format Article
id doaj-art-2f080f520a734acf87e0778fcb4997da
institution Kabale University
issn 1778-3569
language English
publishDate 2024-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-2f080f520a734acf87e0778fcb4997da2025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G773974910.5802/crmath.58810.5802/crmath.588The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base fieldRapinchuk, Andrei0Rapinchuk, Igor1Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USADepartment of Mathematics, Michigan State University, East Lansing, MI 48824, USALet $K$ be a field and $V$ be a set of rank one valuations of $K$. The corresponding Tate–Shafarevich group of a $K$-torus $T$ is $\Sha (T, V) = \ker (H^1(K, T) \rightarrow \prod _{v\,\in \,V} H^1(K_v, T))$. We prove that if $K = k(X)$ is the function field of a smooth geometrically integral quasi-projective variety over a field $k$ of characteristic 0 and $V$ is the set of discrete valuations of $K$ associated with prime divisors on $X$, then for any torus $T$ defined over the base field $k$, the group $\Sha (T, V)$ is finite in the following situations: (1) $k$ is finitely generated and $X(k) \ne \emptyset $; (2) $k$ is a number field.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.588/
spellingShingle Rapinchuk, Andrei
Rapinchuk, Igor
The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
Comptes Rendus. Mathématique
title The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
title_full The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
title_fullStr The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
title_full_unstemmed The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
title_short The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
title_sort finiteness of the tate shafarevich group over function fields for algebraic tori defined over the base field
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.588/
work_keys_str_mv AT rapinchukandrei thefinitenessofthetateshafarevichgroupoverfunctionfieldsforalgebraictoridefinedoverthebasefield
AT rapinchukigor thefinitenessofthetateshafarevichgroupoverfunctionfieldsforalgebraictoridefinedoverthebasefield
AT rapinchukandrei finitenessofthetateshafarevichgroupoverfunctionfieldsforalgebraictoridefinedoverthebasefield
AT rapinchukigor finitenessofthetateshafarevichgroupoverfunctionfieldsforalgebraictoridefinedoverthebasefield