Exploring the Core-galaxy Connection
Halo core tracking is a novel concept designed to efficiently follow halo substructure in large simulations. We have recently developed this concept in gravity-only simulations to investigate the galaxy-halo connection in the context of empirical and semi-analytic models. Here, we incorporate infor...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Maynooth Academic Publishing
2025-06-01
|
| Series: | The Open Journal of Astrophysics |
| Online Access: | https://doi.org/10.33232/001c.141464 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Halo core tracking is a novel concept designed to efficiently follow halo substructure in large simulations. We have recently developed this concept in gravity-only simulations to investigate the galaxy-halo connection in the context of empirical and semi-analytic models. Here, we incorporate information from hydrodynamics simulations, with an emphasis on establishing a connection between cores and galaxies. We compare cores across gravity-only, adiabatic hydrodynamics, and subgrid hydrodynamics simulations with the same initial phases. We demonstrate that cores are stable entities whose halo-centric radial profiles match across the simulations. We further develop a methodology that uses merging and infall mass cuts to group cores in the hydrodynamics simulation, creating on average, a one-to-one match to corresponding galaxies. We apply this methodology to cores from the gravity-only simulation, thus creating a proxy for galaxies which approximate the populations from the hydrodynamics simulation. Our results pave the way to incorporate inputs from smaller-scale hydrodynamics simulations directly into large-scale gravity-only runs in a principled manner. |
|---|---|
| ISSN: | 2565-6120 |