Transformasi Kota Cerdas dalam Mitigasi Banjir: Pemodelan Curah Hujan DKI Jakarta dengan Pendekatan Spatial Vector Autoregressive (SpVAR) dan Pemetaan Bobot Queen Contiguity

Perubahan iklim dan cuaca ekstrem menjadi tantangan global, termasuk di Indonesia, dengan peningkatan banjir di DKI Jakarta. Penanggulangan membutuhkan peramalan curah hujan yang akurat. Model VAR digunakan untuk memahami hubungan variabel cuaca. Namun, data deret waktu sering memiliki dimensi spas...

Full description

Saved in:
Bibliographic Details
Main Authors: Rinda Lolita Melanwati, Eni Sumarminingsih, Henny Pramoedyo
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/7537
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perubahan iklim dan cuaca ekstrem menjadi tantangan global, termasuk di Indonesia, dengan peningkatan banjir di DKI Jakarta. Penanggulangan membutuhkan peramalan curah hujan yang akurat. Model VAR digunakan untuk memahami hubungan variabel cuaca. Namun, data deret waktu sering memiliki dimensi spasial. Oleh karena itu, dikembangkan model Spatial Vector Autoregressive (SpVAR) yang mempertimbangkan dimensi spasial dan waktu. Pembobot queen contiguity digunakan untuk representasi yang lebih akurat. Penelitian ini memanfaatkan data BPS DKI Jakarta dari Januari 2017 hingga Desember 2021. Hasilnya menunjukkan pengaruh spasial dalam model SpVAR (1,3) dengan bobot queen contiguity. Curah hujan, suhu, dan kelembaban udara saling mempengaruhi di wilayah diprediksi dan lainnya. Model ini penting dalam strategi mitigasi banjir dan kebijakan kota cerdas untuk mengurangi risiko banjir di DKI Jakarta.   Abstract Climate change and extreme weather pose global challenges, including in Indonesia, leading to increased floods in DKI Jakarta. Addressing this requires accurate rainfall forecasts. The VAR model is used to understand the relationships between weather variables. However, time series data often have spatial dimensions. Therefore, a Spatial Vector Autoregressive (SpVAR) model has been developed considering both spatial and temporal dimensions. Queen contiguity weighting is used for more accurate representation. This study utilizes BPS DKI Jakarta data from January 2017 to December 2021. The results show spatial influence in the SpVAR (1,3) model with queen contiguity weighting. Rainfall, temperature, and humidity mutually influence predicted and other areas. This model is crucial for flood mitigation strategies and smart city policies to reduce flood risks in DKI Jakarta.
ISSN:2355-7699
2528-6579