Deep Learning-Driven Throughput Maximization in Covert Communication for UAV-RIS Cognitive Systems

This paper examines a cognitive radio (CR) nonorthogonal multiple access (NOMA) system in which an unmanned aerial vehicle equipped with a reconfigurable intelligent surface (UAV-RIS) plays two roles: relaying and friendly jamming. The communication protocol has two phases. The first is an energy ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Van Nhan Vo, Nguyen Quoc Long, Viet-Hung Dang, Tu Dac Ho, Hung Tran, Symeon Chatzinotas, Dinh-Hieu Tran, Surasak Sanguanpong, Chakchai So-In
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of the Communications Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10980338/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines a cognitive radio (CR) nonorthogonal multiple access (NOMA) system in which an unmanned aerial vehicle equipped with a reconfigurable intelligent surface (UAV-RIS) plays two roles: relaying and friendly jamming. The communication protocol has two phases. The first is an energy harvesting phase in which the UAV harvests radio frequency energy from a power beacon. In the second phase, a secondary transmitter (ST) simultaneously sends superimposed signals to secondary receivers (SRs) (a public SR and a covert SR) via NOMA with the assistance of the UAV-RIS. Then, a UAV warden and a UAV jammer launch a cooperative attack, in which the first adversary wiretaps the signals from the ST and UAV-RIS, whereas the second interferes with the SRs to force the ST to increase its transmit power. For improved secrecy, the UAV-RIS uses its harvested energy to combat the UAV warden. For this system, the secrecy performance is evaluated on the basis of the concept of covert communication. In particular, optimization algorithms are employed to maximize the covert SR throughput under outage probability and security constraints. A deep neural network model is subsequently trained to discover the relationships between the environmental parameters and optimized parameters to enable rapid adaptation to environmental conditions.
ISSN:2644-125X