Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanhong Li, Huimei Wang, Wenjie Wang, Lei Yang, Yuangang Zu
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2013/698752
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P>0.05). These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc.) by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P<0.05). These different responses sharply decreased element ratios (C : O, C : N, and C : Si) in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.
ISSN:1537-744X