Dot product rearrangements

Let a=(an), x=(xn) denote nonnegative sequences; x=(xπ(n)) denotes the rearranged sequence determined by the permutation π, a⋅x denotes the dot product ∑anxn; and S(a,x) denotes {a⋅xπ:π is a permuation of the positive integers}. We examine S(a,x) as a subset of the nonnegative real line in certain s...

Full description

Saved in:
Bibliographic Details
Main Authors: Paul Erdos, Gary Weiss
Format: Article
Language:English
Published: Wiley 1983-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171283000368
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849306331897397248
author Paul Erdos
Gary Weiss
author_facet Paul Erdos
Gary Weiss
author_sort Paul Erdos
collection DOAJ
description Let a=(an), x=(xn) denote nonnegative sequences; x=(xπ(n)) denotes the rearranged sequence determined by the permutation π, a⋅x denotes the dot product ∑anxn; and S(a,x) denotes {a⋅xπ:π is a permuation of the positive integers}. We examine S(a,x) as a subset of the nonnegative real line in certain special circumstances. The main result is that if an↑∞, then S(a,x)=[a⋅x,∞] for every xn↓≠0 if and only if an+1/an is uniformly bounded.
format Article
id doaj-art-2e80f1b6e009410db2a6b6d805855ca3
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1983-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2e80f1b6e009410db2a6b6d805855ca32025-08-20T03:55:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251983-01-016340941810.1155/S0161171283000368Dot product rearrangementsPaul Erdos0Gary Weiss1Mathematics Institute, University of Cincinnati, Budapest, HungaryMathematics Institute, University of Cincinnati, Budapest, HungaryLet a=(an), x=(xn) denote nonnegative sequences; x=(xπ(n)) denotes the rearranged sequence determined by the permutation π, a⋅x denotes the dot product ∑anxn; and S(a,x) denotes {a⋅xπ:π is a permuation of the positive integers}. We examine S(a,x) as a subset of the nonnegative real line in certain special circumstances. The main result is that if an↑∞, then S(a,x)=[a⋅x,∞] for every xn↓≠0 if and only if an+1/an is uniformly bounded.http://dx.doi.org/10.1155/S0161171283000368dot productseries rearrangementsconditional convergence.
spellingShingle Paul Erdos
Gary Weiss
Dot product rearrangements
International Journal of Mathematics and Mathematical Sciences
dot product
series rearrangements
conditional convergence.
title Dot product rearrangements
title_full Dot product rearrangements
title_fullStr Dot product rearrangements
title_full_unstemmed Dot product rearrangements
title_short Dot product rearrangements
title_sort dot product rearrangements
topic dot product
series rearrangements
conditional convergence.
url http://dx.doi.org/10.1155/S0161171283000368
work_keys_str_mv AT paulerdos dotproductrearrangements
AT garyweiss dotproductrearrangements