Calculated Changes in the Elastic Properties of MgCNi3 at the Superconducting Transition

We calculated the elastic properties of MgCNi3 at the superconducting transition () using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity () is expected at ....

Full description

Saved in:
Bibliographic Details
Main Author: R. Abd-Shukor
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2013/247393
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We calculated the elastic properties of MgCNi3 at the superconducting transition () using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity () is expected at . The step discontinuities at the transition temperature indicated the importance of lattice changes to the superconducting mechanism of MgCNi3. The Debye temperature was calculated to be 460 K. The electron-phonon coupling constants calculated in the weak and strong coupling limits of the BCS theory and the van Hove scenario showed that MgCNi3 is a moderately strong coupled superconductor.
ISSN:1687-8434
1687-8442