On an inequality related to the volume of a parallelepiped
The problem of establishing an upper bound for the volume of a parallelepiped is considered by utilizing an original approach involving a skew-symmetric matrix of order four (along with its Moore–Penrose inverse). It is shown that the commonly known inequality characterizing the bound can be virtual...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | Examples and Counterexamples |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666657X24000211 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The problem of establishing an upper bound for the volume of a parallelepiped is considered by utilizing an original approach involving a skew-symmetric matrix of order four (along with its Moore–Penrose inverse). It is shown that the commonly known inequality characterizing the bound can be virtually sharpened. Similarly, a sharpening is established with respect to the Cauchy–Schwarz inequality. General properties of the Moore–Penrose inverse of a skew-symmetric matrix are discussed as well. |
|---|---|
| ISSN: | 2666-657X |