Dynamic Mechanical Characteristics and Fracture Size Effect of Coal Sandstone Under High-Temperature and High-Strain Rate Coupling Action

The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and cl...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming Li, Fuqiang Zhu, Yiwen Mao, Fangwei Fan, Boyuan Wu, Jishuo Deng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/6/381
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and clay minerals. Its mechanical behavior under high-temperature and dynamic loading is complex and significantly affects rock stability. To investigate the deformation and failure mechanisms under thermal–dynamic coupling, this study conducted uniaxial impact compression tests using a high-temperature split Hopkinson pressure bar (HT-SHPB) system. The focus was on analyzing mechanical response, energy dissipation, and fragmentation characteristics under varying temperature and strain rate conditions. The results show that the dynamic elastic modulus, compressive strength, fractal dimension of fragments, energy dissipation density, and energy consumption rate all increase initially with temperature and then decrease, with inflection points observed at 400 °C. Conversely, dynamic peak strain first decreases and then increases with rising temperature, also showing a turning point at 400 °C. This indicates a shift in the deformation and failure mode of the material. The findings provide critical insights into the thermo-mechanical behavior of coal-bearing sandstone under extreme conditions and offer a theoretical basis for designing effective deformation control strategies in underground coal gasification projects.
ISSN:2504-3110