Matrix Transformations and Quasi-Newton Methods
We first recall some properties of infinite tridiagonal matrices considered as matrix transformations in sequence spaces of the forms sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section method for approximating a solution of an infinite linear system. Finally, using a quasi-Ne...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2007-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2007/25704 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554693669158912 |
---|---|
author | Boubakeur Benahmed Bruno de Malafosse Adnan Yassine |
author_facet | Boubakeur Benahmed Bruno de Malafosse Adnan Yassine |
author_sort | Boubakeur Benahmed |
collection | DOAJ |
description | We first recall some properties of infinite tridiagonal
matrices considered as matrix transformations in sequence spaces of the forms
sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section
method for approximating a solution of an infinite linear system. Finally,
using a quasi-Newton method, we construct a sequence that converges fast to a
solution of an infinite linear system. |
format | Article |
id | doaj-art-2e536a43d381431b9f279afe628736db |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2007-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-2e536a43d381431b9f279afe628736db2025-02-03T05:50:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/2570425704Matrix Transformations and Quasi-Newton MethodsBoubakeur Benahmed0Bruno de Malafosse1Adnan Yassine2Laboratoire Mathématiques Appliquées du Havre (LMAH) Université du Havre, IUT Le Havre, BP 4006, Le Havre 76610, FranceLaboratoire Mathématiques Appliquées du Havre (LMAH) Université du Havre, IUT Le Havre, BP 4006, Le Havre 76610, FranceInstitut Supérieur d'Études Logistique (ISEL), Université du Havre, Quai Frissard, BP 1137, Le Havre 76063, FranceWe first recall some properties of infinite tridiagonal matrices considered as matrix transformations in sequence spaces of the forms sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section method for approximating a solution of an infinite linear system. Finally, using a quasi-Newton method, we construct a sequence that converges fast to a solution of an infinite linear system.http://dx.doi.org/10.1155/2007/25704 |
spellingShingle | Boubakeur Benahmed Bruno de Malafosse Adnan Yassine Matrix Transformations and Quasi-Newton Methods International Journal of Mathematics and Mathematical Sciences |
title | Matrix Transformations and Quasi-Newton Methods |
title_full | Matrix Transformations and Quasi-Newton Methods |
title_fullStr | Matrix Transformations and Quasi-Newton Methods |
title_full_unstemmed | Matrix Transformations and Quasi-Newton Methods |
title_short | Matrix Transformations and Quasi-Newton Methods |
title_sort | matrix transformations and quasi newton methods |
url | http://dx.doi.org/10.1155/2007/25704 |
work_keys_str_mv | AT boubakeurbenahmed matrixtransformationsandquasinewtonmethods AT brunodemalafosse matrixtransformationsandquasinewtonmethods AT adnanyassine matrixtransformationsandquasinewtonmethods |