Matrix Transformations and Quasi-Newton Methods

We first recall some properties of infinite tridiagonal matrices considered as matrix transformations in sequence spaces of the forms sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section method for approximating a solution of an infinite linear system. Finally, using a quasi-Ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Boubakeur Benahmed, Bruno de Malafosse, Adnan Yassine
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/25704
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554693669158912
author Boubakeur Benahmed
Bruno de Malafosse
Adnan Yassine
author_facet Boubakeur Benahmed
Bruno de Malafosse
Adnan Yassine
author_sort Boubakeur Benahmed
collection DOAJ
description We first recall some properties of infinite tridiagonal matrices considered as matrix transformations in sequence spaces of the forms sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section method for approximating a solution of an infinite linear system. Finally, using a quasi-Newton method, we construct a sequence that converges fast to a solution of an infinite linear system.
format Article
id doaj-art-2e536a43d381431b9f279afe628736db
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2e536a43d381431b9f279afe628736db2025-02-03T05:50:51ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/2570425704Matrix Transformations and Quasi-Newton MethodsBoubakeur Benahmed0Bruno de Malafosse1Adnan Yassine2Laboratoire Mathématiques Appliquées du Havre (LMAH) Université du Havre, IUT Le Havre, BP 4006, Le Havre 76610, FranceLaboratoire Mathématiques Appliquées du Havre (LMAH) Université du Havre, IUT Le Havre, BP 4006, Le Havre 76610, FranceInstitut Supérieur d'Études Logistique (ISEL), Université du Havre, Quai Frissard, BP 1137, Le Havre 76063, FranceWe first recall some properties of infinite tridiagonal matrices considered as matrix transformations in sequence spaces of the forms sξ, sξ∘, sξ(c), or lp(ξ). Then, we give some results on the finite section method for approximating a solution of an infinite linear system. Finally, using a quasi-Newton method, we construct a sequence that converges fast to a solution of an infinite linear system.http://dx.doi.org/10.1155/2007/25704
spellingShingle Boubakeur Benahmed
Bruno de Malafosse
Adnan Yassine
Matrix Transformations and Quasi-Newton Methods
International Journal of Mathematics and Mathematical Sciences
title Matrix Transformations and Quasi-Newton Methods
title_full Matrix Transformations and Quasi-Newton Methods
title_fullStr Matrix Transformations and Quasi-Newton Methods
title_full_unstemmed Matrix Transformations and Quasi-Newton Methods
title_short Matrix Transformations and Quasi-Newton Methods
title_sort matrix transformations and quasi newton methods
url http://dx.doi.org/10.1155/2007/25704
work_keys_str_mv AT boubakeurbenahmed matrixtransformationsandquasinewtonmethods
AT brunodemalafosse matrixtransformationsandquasinewtonmethods
AT adnanyassine matrixtransformationsandquasinewtonmethods