Półodwrotna Metoda w Hydrodynamice Płaskiej

The first part of the paper is devoted to generalization of the semi-inverse method of [1]. Some applications are given. Many boundary value problems can easily be solved for regions bounded by the curves plotted in Fig. 2 or 3 and the two radii on the real axis extending to infinity. The curves in...

Full description

Saved in:
Bibliographic Details
Main Author: S.I. Gheorghitza
Format: Article
Language:English
Published: Institute of Fundamental Technological Research 1965-09-01
Series:Engineering Transactions
Online Access:https://et.ippt.pan.pl/index.php/et/article/view/2769
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849320983493607424
author S.I. Gheorghitza
author_facet S.I. Gheorghitza
author_sort S.I. Gheorghitza
collection DOAJ
description The first part of the paper is devoted to generalization of the semi-inverse method of [1]. Some applications are given. Many boundary value problems can easily be solved for regions bounded by the curves plotted in Fig. 2 or 3 and the two radii on the real axis extending to infinity. The curves in Fig. 4 can represent boundaries for motion in channels or in porous media. Some boundary value problems for regions as shown in Fig. 5 by using the method of bipolar coordinates are dealt with in the closing part of the paper.
format Article
id doaj-art-2e36a0dc490c416b94a54ff46b9d0385
institution Kabale University
issn 0867-888X
2450-8071
language English
publishDate 1965-09-01
publisher Institute of Fundamental Technological Research
record_format Article
series Engineering Transactions
spelling doaj-art-2e36a0dc490c416b94a54ff46b9d03852025-08-20T03:49:54ZengInstitute of Fundamental Technological ResearchEngineering Transactions0867-888X2450-80711965-09-01133Półodwrotna Metoda w Hydrodynamice PłaskiejS.I. Gheorghitza0Instytut Matematyczny Rumuńskiej Akademii NaukThe first part of the paper is devoted to generalization of the semi-inverse method of [1]. Some applications are given. Many boundary value problems can easily be solved for regions bounded by the curves plotted in Fig. 2 or 3 and the two radii on the real axis extending to infinity. The curves in Fig. 4 can represent boundaries for motion in channels or in porous media. Some boundary value problems for regions as shown in Fig. 5 by using the method of bipolar coordinates are dealt with in the closing part of the paper.https://et.ippt.pan.pl/index.php/et/article/view/2769
spellingShingle S.I. Gheorghitza
Półodwrotna Metoda w Hydrodynamice Płaskiej
Engineering Transactions
title Półodwrotna Metoda w Hydrodynamice Płaskiej
title_full Półodwrotna Metoda w Hydrodynamice Płaskiej
title_fullStr Półodwrotna Metoda w Hydrodynamice Płaskiej
title_full_unstemmed Półodwrotna Metoda w Hydrodynamice Płaskiej
title_short Półodwrotna Metoda w Hydrodynamice Płaskiej
title_sort polodwrotna metoda w hydrodynamice plaskiej
url https://et.ippt.pan.pl/index.php/et/article/view/2769
work_keys_str_mv AT sigheorghitza połodwrotnametodawhydrodynamicepłaskiej