Preparing Schrödinger Cat States in a Microwave Cavity Using a Neural Network

Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-n...

Full description

Saved in:
Bibliographic Details
Main Authors: Hector Hutin, Pavlo Bilous, Chengzhi Ye, Sepideh Abdollahi, Loris Cros, Tom Dvir, Tirth Shah, Yonatan Cohen, Audrey Bienfait, Florian Marquardt, Benjamin Huard
Format: Article
Language:English
Published: American Physical Society 2025-01-01
Series:PRX Quantum
Online Access:http://doi.org/10.1103/PRXQuantum.6.010321
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schrödinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.
ISSN:2691-3399