Pan-cancer characterization of m6A-mediated regulation of T cell exhaustion dynamics and clinical relevancies in human cancers
T cell exhaustion (TEX) is a major barrier to effective immunotherapy. The role of N6-methyladenosine (m6A) modification in regulating immune cell function has been recognized, but its impact on TEX dynamics across cancer types and clinical outcomes remains unclear. Here, we conducted a pan-cancer a...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | Molecular Therapy: Nucleic Acids |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2162253125000198 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | T cell exhaustion (TEX) is a major barrier to effective immunotherapy. The role of N6-methyladenosine (m6A) modification in regulating immune cell function has been recognized, but its impact on TEX dynamics across cancer types and clinical outcomes remains unclear. Here, we conducted a pan-cancer analysis integrating multi-omics data from cell lines, single-cell RNA sequencing, and pan-cancer and immunotherapy datasets to explore the dynamic interplay between m6A modification and TEX. We found that m6A modification influences key TEX-associated genes at both the cellular and single-cell levels, with distinct expression patterns across the exhaustion spectrum. Based on m6A-TEX interactions, three pan-cancer subtypes were identified, each with unique molecular profiles, immune phenotypes, and survival outcomes. The TexLm6AL subtype, characterized by low m6A activity and low TEX, correlated with high immune infiltration, increased cytolytic activity, and favorable survival, whereas the TexLm6AH and TexHm6AH subtypes with higher m6A activity were associated with poorer survival. Multivariate analysis confirmed the prognostic value of this classification independent of traditional clinical factors. Moreover, m6A-TEX crosstalk influenced responses to immune checkpoint blockade therapies. Our findings provide novel insights into the role of m6A in TEX regulation and underscore the potential of m6A regulators as biomarkers and therapeutic targets for advancing cancer immunotherapy. |
---|---|
ISSN: | 2162-2531 |