Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means

We present the largest values α1, α2, and α3 and the smallest values β1, β2, and β3 such that the double inequalities α1M(a,b)+(1-α1)H(a,b)<A(a,b)<β1M(a,b)+ (1-β1)H(a,b), α2M(a,b)+(1-α2) H-(a,b) < A(a,b)<β2M(a,b)+(1-β2)H-(a,b), and α3M(a,b)+(1-α3)He(a,b)< A(a,b)<β3M (a,b)+(1-β3)He(...

Full description

Saved in:
Bibliographic Details
Main Authors: Fan Zhang, Yu-Ming Chu, Wei-Mao Qian
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/582504
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849693393873010688
author Fan Zhang
Yu-Ming Chu
Wei-Mao Qian
author_facet Fan Zhang
Yu-Ming Chu
Wei-Mao Qian
author_sort Fan Zhang
collection DOAJ
description We present the largest values α1, α2, and α3 and the smallest values β1, β2, and β3 such that the double inequalities α1M(a,b)+(1-α1)H(a,b)<A(a,b)<β1M(a,b)+ (1-β1)H(a,b), α2M(a,b)+(1-α2) H-(a,b) < A(a,b)<β2M(a,b)+(1-β2)H-(a,b), and α3M(a,b)+(1-α3)He(a,b)< A(a,b)<β3M (a,b)+(1-β3)He(a,b) hold for all a,b>0 with a≠b, where M(a,b), A(a,b), He(a,b), H(a,b) and H-(a,b) denote the Neuman-Sándor, arithmetic, Heronian, harmonic, and harmonic root-square means of a and b, respectively.
format Article
id doaj-art-2ddcdaa466bc48ef86caa2cc97f59c75
institution DOAJ
issn 1110-757X
1687-0042
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-2ddcdaa466bc48ef86caa2cc97f59c752025-08-20T03:20:26ZengWileyJournal of Applied Mathematics1110-757X1687-00422013-01-01201310.1155/2013/582504582504Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate MeansFan Zhang0Yu-Ming Chu1Wei-Mao Qian2School of Architecture Engineering, Huzhou Vocational & Technical College, Huzhou 313000, ChinaSchool of Mathematics and Computation Science, Hunan City University, Yiyang 413000, ChinaDepartment of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, ChinaWe present the largest values α1, α2, and α3 and the smallest values β1, β2, and β3 such that the double inequalities α1M(a,b)+(1-α1)H(a,b)<A(a,b)<β1M(a,b)+ (1-β1)H(a,b), α2M(a,b)+(1-α2) H-(a,b) < A(a,b)<β2M(a,b)+(1-β2)H-(a,b), and α3M(a,b)+(1-α3)He(a,b)< A(a,b)<β3M (a,b)+(1-β3)He(a,b) hold for all a,b>0 with a≠b, where M(a,b), A(a,b), He(a,b), H(a,b) and H-(a,b) denote the Neuman-Sándor, arithmetic, Heronian, harmonic, and harmonic root-square means of a and b, respectively.http://dx.doi.org/10.1155/2013/582504
spellingShingle Fan Zhang
Yu-Ming Chu
Wei-Mao Qian
Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
Journal of Applied Mathematics
title Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
title_full Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
title_fullStr Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
title_full_unstemmed Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
title_short Bounds for the Arithmetic Mean in Terms of the Neuman-Sándor and Other Bivariate Means
title_sort bounds for the arithmetic mean in terms of the neuman sandor and other bivariate means
url http://dx.doi.org/10.1155/2013/582504
work_keys_str_mv AT fanzhang boundsforthearithmeticmeanintermsoftheneumansandorandotherbivariatemeans
AT yumingchu boundsforthearithmeticmeanintermsoftheneumansandorandotherbivariatemeans
AT weimaoqian boundsforthearithmeticmeanintermsoftheneumansandorandotherbivariatemeans