Network Congestion Control Algorithm for Image Transmission—HRI and Visual Light Communications of an Autonomous Underwater Vehicle for Intervention
In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Future Internet |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-5903/17/1/10 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the challenge of teleoperating robots in harsh environments such as underwater or in tunnels is addressed. In these environments, wireless communication networks are prone to congestion, leading to potential mission failures. Our approach integrates a Human–Robot Interface (HRI) with a network congestion control algorithm at the application level for conservative transmission of images using the Robot Operating System (ROS) framework. The system was designed to avoid network congestion by adjusting the image compression parameters and the transmission rate depending on the real-time network conditions. To evaluate its performance, the algorithm was tested in two wireless underwater use cases: pipe inspection and an intervention task. An Autonomous Underwater Vehicle for Intervention (I-AUV) equipped with a Visual Light Communication (VLC) modem was used. Characterization of the VLC network was performed while the robot performed trajectories in the tank. The results demonstrate that our approach allows an operator to perform wireless missions where teleoperation requires images and the network conditions are variable. This solution provides a robust framework for image transmission and network control in the application layer, which allows for integration with any ROS-based system. |
---|---|
ISSN: | 1999-5903 |