Comparison of Electronic Structure and Magnetic Properties of Few Layer Graphene and Multiwall Carbon Nanotubes

A comparative study has been made for the non-catalyst based few layer graphene (FLG) and Fe-catalyst based multiwall carbon nanotubes (MWCNTs). Magnetic and electronic properties of FLG and MWCNTs were studied using magnetic M-H hysteresis loops and synchrotron radiation based X-ray absorption fine...

Full description

Saved in:
Bibliographic Details
Main Author: Sekhar Chandra Ray
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/7362131
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comparative study has been made for the non-catalyst based few layer graphene (FLG) and Fe-catalyst based multiwall carbon nanotubes (MWCNTs). Magnetic and electronic properties of FLG and MWCNTs were studied using magnetic M-H hysteresis loops and synchrotron radiation based X-ray absorption fine structure spectroscopy measurements. Structural defects and electronic and bonding properties of FLG/MWCNTs have been studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). The work functions of FLG and MWCNTs are 4.01 eV and 3.79 eV, respectively, obtained from UPS (He-I) spectra. UPS (He-II) results suggest that the density of states (DOS) of MWCNTs is higher than FLG and is consistent with Raman spectroscopy result that shows the defect of MWCNTs is higher than FLG. The magnetic coercivity (Hc) of the MWCNTs (~750 Oe) is higher than FLG (~85 Oe) which could be used for various technological magnetic applications.
ISSN:1687-8434
1687-8442