An Efficient Metal-Free Hydrophilic Carbon as a Counter Electrode for Dye-Sensitized Solar Cells
This study presents a new cost-effective metal-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). CE was prepared by doctor blading a hydrophilic carbon (HC) particle on a fluorine-doped tin oxide substrate. Thereafter, HC CE was characterized using X-ray diffraction, profilometry,...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2016/5186762 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents a new cost-effective metal-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). CE was prepared by doctor blading a hydrophilic carbon (HC) particle on a fluorine-doped tin oxide substrate. Thereafter, HC CE was characterized using X-ray diffraction, profilometry, four-point probe testing, and cyclic voltammetry. A 2 µm thick HC CE revealed a comparable catalytic activity to that of the Pt electrode under the same experimental conditions. DSSC based on HC CE was analyzed and showed Jsc of 6.87 mA/cm2 close to that of DSSC with Pt CE (7.0 mA/cm2). More importantly, DSSC based on HC CE yielded a power conversion efficiency (η) of 2.93% under AM 1.5 irradiation (100 mW/cm2), which was comparable to that of DSSC based on standard Pt CE. These findings suggest that HC CE could be a promising CE for low-cost DSSCs. |
---|---|
ISSN: | 1110-662X 1687-529X |