Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride

<p>Although the nucleation route driven by sulfuric acid (H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>) and ammonia (NH<span class="inline-formula"><sub...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Wang, R. Li, S. Chen, R. Mu, C. Zhang, X. Ma, M. Khan, T. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2025-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/5695/2025/acp-25-5695-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850212606917214208
author R. Wang
R. Li
S. Chen
R. Mu
C. Zhang
X. Ma
M. Khan
T. Zhang
author_facet R. Wang
R. Li
S. Chen
R. Mu
C. Zhang
X. Ma
M. Khan
T. Zhang
author_sort R. Wang
collection DOAJ
description <p>Although the nucleation route driven by sulfuric acid (H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>) and ammonia (NH<span class="inline-formula"><sub>3</sub></span>) primarily dominates new particle formation (NPF) in the atmosphere, exploring the role of other trace species in the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span> system is crucial for a more comprehensive insight into NPF processes. Formic sulfuric anhydride (FSA) has been observed in the atmospheric environment and is found in abundance in atmospheric fine particles. Nevertheless, its effect on SO<span class="inline-formula"><sub>3</sub></span> hydrolysis and NPF remains poorly understood. Here, we studied the enhancing effect of FSA on gaseous and interfacial SO<span class="inline-formula"><sub>3</sub></span> hydrolysis as well as its impact on H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span>-driven NPF occurring through quantum chemical calculations, Atmospheric Cluster Dynamics Code (ACDC) kinetics combined with Born–Oppenheimer molecular dynamics (BOMD). Gaseous-phase findings indicate that FSA-catalyzed SO<span class="inline-formula"><sub>3</sub></span> hydrolysis is nearly barrierless. At an [FSA] <span class="inline-formula">=</span> 10<span class="inline-formula"><sup>7</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>, this reaction competes effectively with SO<span class="inline-formula"><sub>3</sub></span> hydrolysis in the presence of HNO<span class="inline-formula"><sub>3</sub></span> (10<span class="inline-formula"><sup>9</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>), HCOOH (10<span class="inline-formula"><sup>8</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>) and H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> (10<span class="inline-formula"><sup>6</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>) in the range of 280.0–320.0 K. At the gas–liquid nanodroplet interface, BOMD simulations reveal that FSA-mediated SO<span class="inline-formula"><sub>3</sub></span> hydrolysis follows a stepwise mechanism, completing within a few picoseconds. Notably, FSA enhances the formation rate of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span> clusters by over 10<span class="inline-formula"><sup>5</sup></span> times in regions with relatively high [FSA] at elevated temperatures. Additionally, the interfacial FSA<span class="inline-formula"><sup>−</sup></span> ion has the ability to appeal precursor species for particle formation from the gaseous phase to the water nanodroplet interface, thereby facilitating particle growth. These results present new insights into both the pathways of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> formation and aerosol particle growth in the polluted boundary layer.</p>
format Article
id doaj-art-2daea24e494f46af9f3bb865c2c26d78
institution OA Journals
issn 1680-7316
1680-7324
language English
publishDate 2025-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-2daea24e494f46af9f3bb865c2c26d782025-08-20T02:09:18ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-06-01255695570910.5194/acp-25-5695-2025Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydrideR. Wang0R. Li1S. Chen2R. Mu3C. Zhang4X. Ma5M. Khan6T. Zhang7Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. ChinaShaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. ChinaShaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. ChinaShaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. ChinaShaanxi Key Laboratory of Catalysis, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. ChinaSchool of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. ChinaCollege of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. ChinaShaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China<p>Although the nucleation route driven by sulfuric acid (H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>) and ammonia (NH<span class="inline-formula"><sub>3</sub></span>) primarily dominates new particle formation (NPF) in the atmosphere, exploring the role of other trace species in the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span> system is crucial for a more comprehensive insight into NPF processes. Formic sulfuric anhydride (FSA) has been observed in the atmospheric environment and is found in abundance in atmospheric fine particles. Nevertheless, its effect on SO<span class="inline-formula"><sub>3</sub></span> hydrolysis and NPF remains poorly understood. Here, we studied the enhancing effect of FSA on gaseous and interfacial SO<span class="inline-formula"><sub>3</sub></span> hydrolysis as well as its impact on H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span>-driven NPF occurring through quantum chemical calculations, Atmospheric Cluster Dynamics Code (ACDC) kinetics combined with Born–Oppenheimer molecular dynamics (BOMD). Gaseous-phase findings indicate that FSA-catalyzed SO<span class="inline-formula"><sub>3</sub></span> hydrolysis is nearly barrierless. At an [FSA] <span class="inline-formula">=</span> 10<span class="inline-formula"><sup>7</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>, this reaction competes effectively with SO<span class="inline-formula"><sub>3</sub></span> hydrolysis in the presence of HNO<span class="inline-formula"><sub>3</sub></span> (10<span class="inline-formula"><sup>9</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>), HCOOH (10<span class="inline-formula"><sup>8</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>) and H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> (10<span class="inline-formula"><sup>6</sup></span> molecules cm<span class="inline-formula"><sup>−3</sup></span>) in the range of 280.0–320.0 K. At the gas–liquid nanodroplet interface, BOMD simulations reveal that FSA-mediated SO<span class="inline-formula"><sub>3</sub></span> hydrolysis follows a stepwise mechanism, completing within a few picoseconds. Notably, FSA enhances the formation rate of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–NH<span class="inline-formula"><sub>3</sub></span> clusters by over 10<span class="inline-formula"><sup>5</sup></span> times in regions with relatively high [FSA] at elevated temperatures. Additionally, the interfacial FSA<span class="inline-formula"><sup>−</sup></span> ion has the ability to appeal precursor species for particle formation from the gaseous phase to the water nanodroplet interface, thereby facilitating particle growth. These results present new insights into both the pathways of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> formation and aerosol particle growth in the polluted boundary layer.</p>https://acp.copernicus.org/articles/25/5695/2025/acp-25-5695-2025.pdf
spellingShingle R. Wang
R. Li
S. Chen
R. Mu
C. Zhang
X. Ma
M. Khan
T. Zhang
Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
Atmospheric Chemistry and Physics
title Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
title_full Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
title_fullStr Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
title_full_unstemmed Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
title_short Enhancing SO<sub>3</sub> hydrolysis and nucleation: the role of formic sulfuric anhydride
title_sort enhancing so sub 3 sub hydrolysis and nucleation the role of formic sulfuric anhydride
url https://acp.copernicus.org/articles/25/5695/2025/acp-25-5695-2025.pdf
work_keys_str_mv AT rwang enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT rli enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT schen enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT rmu enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT czhang enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT xma enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT mkhan enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride
AT tzhang enhancingsosub3subhydrolysisandnucleationtheroleofformicsulfuricanhydride