Reduced hysteresis in La0.7Ce0.3Fe11.5Si1.5 hydrides by grain size reduction
Magnetic cooling technology, based on the magnetocaloric effect (MCE), offers an energy-efficient and eco-friendly alternative to conventional gas compression, but is often hindered by large magnetic hysteresis, which limits cyclic performance. In this study, we show that the hysteresis of La0.7Ce0....
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-12-01
|
| Series: | Science and Technology of Advanced Materials |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/14686996.2025.2525742 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Magnetic cooling technology, based on the magnetocaloric effect (MCE), offers an energy-efficient and eco-friendly alternative to conventional gas compression, but is often hindered by large magnetic hysteresis, which limits cyclic performance. In this study, we show that the hysteresis of La0.7Ce0.3(Fe,Si)₁₃ hydrides – a promising material for room-temperature refrigeration – can be significantly reduced by refining the microstructure of the precursor alloy. Substituting Ce for La in (La0.7Ce0.3)(Fe,Si)13Hx increases hysteresis losses from 12.3 J/kg to 34 J/kg. However, preparing the precursor alloy using the melt-spinning technique can almost eliminate this hysteresis. Lorentz transmission electron microscopy (Lorentz-TEM) shows that phase transition nucleation preferentially occurs at the grain boundaries. The hydrides prepared from melt-spun ribbons exhibit a much larger volume fraction of grain boundaries due to finer grains, providing a higher density of nucleation sites. This reduces the energy barrier for the phase transition and weakens the magneto-structural phase transition, as confirmed by in-situ X-ray diffraction patterns. Consequently, the reduced phase transition energy barrier leads to significantly lower hysteresis in melt-spun hydrides samples. These findings demonstrate the potential of microstructure engineering to reduce hysteresis in (La,Ce)(Fe,Si)13Hₓ materials for room-temperature magnetocaloric applications. |
|---|---|
| ISSN: | 1468-6996 1878-5514 |