LED-Based Collimating Line-Light Combining Freeform and Fresnel Optics

Illumination for line-scan machine vision systems is required to produce a highly asymmetric elliptical beam pattern, to maximize system speed and accuracy. The use of LED emitters with symmetric Lambertian emission patterns is challenging in this context, requiring significant beam reshaping. A des...

Full description

Saved in:
Bibliographic Details
Main Authors: AnneMarie McCarthy, Javier Romero-Vivas, Ciara O'Hara, Natalia Rebrova, Liam Lewis, Stephen P. Hegarty
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8493314/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Illumination for line-scan machine vision systems is required to produce a highly asymmetric elliptical beam pattern, to maximize system speed and accuracy. The use of LED emitters with symmetric Lambertian emission patterns is challenging in this context, requiring significant beam reshaping. A design for a collimated line-light, with long working distance, utilizing LEDs with symmetric Lambertian emission patterns, is presented. Using a combination of Fresnel lenses and total internal reflection (TIR) optics, an elliptical beam with a high degree of collimation is achieved. TIR elements are designed based on an adaptation of a freeform lens design method published by Chen <italic> et al</italic>. [Opt. Express 20, 10 (2012)]. Practical performance of the design is verified experimentally using a prototype unit. In addition, the design is compared, using ray tracing software, to line-lights constructed using commercially available symmetric and elliptical TIR lenses, and its superior performance is confirmed. The optical design described is fully manufacturable and suitable for both small- and large-scale production.
ISSN:1943-0655