Comprehensive MILP Formulation and Solution for Simultaneous Scheduling of Machines and AGVs in a Partitioned Flexible Manufacturing System

This paper proposes a comprehensive Mixed-Integer Linear Programming (MILP) formulation for the simultaneous scheduling of machines and Automated Guided Vehicles (AGVs) within a partitioned Flexible Manufacturing System (FMS). The main objective is to numerically optimize the simultaneous scheduling...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng Zhuang, Jingbo Qu, Tianyu Wang, Liyong Lin, Youyi Bi, Mian Li
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/6/519
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a comprehensive Mixed-Integer Linear Programming (MILP) formulation for the simultaneous scheduling of machines and Automated Guided Vehicles (AGVs) within a partitioned Flexible Manufacturing System (FMS). The main objective is to numerically optimize the simultaneous scheduling of machines and AGVs while considering various workshop layouts and operational constraints. Three different workshop layouts are analyzed, with varying numbers of machines in partitioned workshop areas A and B, to evaluate the performance and effectiveness of the proposed model. The model is tested in multiple scenarios that combine different layouts with varying numbers of workpieces, followed by an extension to consider dynamic initial conditions in a more generalized MILP framework. Results demonstrate that the proposed MILP formulation efficiently generates globally optimal solutions and consistently outperforms a greedy algorithm enhanced by A*-inspired heuristics. Although computationally intensive for large scenarios, the MILP’s optimal results serve as an exact benchmark for evaluating faster heuristic methods. In addition, the study provides practical insight into the integration of AGVs in modern manufacturing systems, paving the way for more flexible and efficient production planning. The findings of this research are expected to contribute to the development of advanced scheduling strategies in automated manufacturing systems.
ISSN:2075-1702