An Efficient Deterministic-Stochastic Model of the Human Body Exposed to ELF Electric Field

The paper deals with the deterministic-stochastic model of the human body represented as cylindrical antenna illuminated by a low frequency electric field. Both analytical and numerical (Galerkin-Bubnov scheme of Boundary Element Method) deterministic solutions of the problem are outlined. This cont...

Full description

Saved in:
Bibliographic Details
Main Authors: Anna Šušnjara, Dragan Poljak
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2016/6153620
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper deals with the deterministic-stochastic model of the human body represented as cylindrical antenna illuminated by a low frequency electric field. Both analytical and numerical (Galerkin-Bubnov scheme of Boundary Element Method) deterministic solutions of the problem are outlined. This contribution introduces the new perspective of the problem: the variability inherent to input parameters, such as the height of the body, the shape of the body, and the conductivity of body tissue, is propagated to the output of interest (induced axial current). The stochastic approach is based on the stochastic collocation (SC) method. Computational examples show the mean trend of both analytically and numerically computed axial current with the confidence margins for different set of input random variables. The results point out the possibility of improving the efficiency in calculation of basic restriction parameter values in electromagnetic dosimetry.
ISSN:1687-5869
1687-5877