Efficiently Characterizing the Quantum Information Flow, Loss, and Recovery in the Central Spin System

Understanding the flow, loss, and recovery of the information between a system and its environment is essential for advancing quantum technologies. The central spin system serves as a useful model for a single qubit, offering valuable insights into how quantum systems can be manipulated and protecte...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiahui Chen, Mohamad Niknam, David Cory
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/26/12/1077
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the flow, loss, and recovery of the information between a system and its environment is essential for advancing quantum technologies. The central spin system serves as a useful model for a single qubit, offering valuable insights into how quantum systems can be manipulated and protected from decoherence. This work uses the stimulated echo experiment to track the information flow between the central spin and its environment, providing a direct measure of the sensitivity of system/environment correlations to environmental dynamics. The extent of mixing and the growth of correlations are quantified through autocorrelation functions of the noise and environmental dynamics, which also enable the estimation of nested commutators between the system/environment and environmental Hamiltonians. Complementary decoupling experiments offer a straightforward measure of the strength of the system Hamiltonians. The approach is experimentally demonstrated on a spin system.
ISSN:1099-4300