Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means

We prove that the double inequalities Iα1(a,b)Q1-α1(a,b)<M(a,b)<Iβ1(a,b)Q1-β1(a,b),Iα2(a,b)C1-α2(a,b)<M(a,b)<Iβ2(a,b)C1-β2(a,b) hold for all a,b>0 with a≠b if and only if α1≥1/2, β1≤log[2log(1+2)]/(1-log2), α2≥5/7, and β2≤log[2log(1+2)], where I(a,b), M(a,b), Q(a,b), and C(a,b) are th...

Full description

Saved in:
Bibliographic Details
Main Authors: Tie-Hong Zhao, Yu-Ming Chu, Yun-Liang Jiang, Yong-Min Li
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/348326
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849306715251539968
author Tie-Hong Zhao
Yu-Ming Chu
Yun-Liang Jiang
Yong-Min Li
author_facet Tie-Hong Zhao
Yu-Ming Chu
Yun-Liang Jiang
Yong-Min Li
author_sort Tie-Hong Zhao
collection DOAJ
description We prove that the double inequalities Iα1(a,b)Q1-α1(a,b)<M(a,b)<Iβ1(a,b)Q1-β1(a,b),Iα2(a,b)C1-α2(a,b)<M(a,b)<Iβ2(a,b)C1-β2(a,b) hold for all a,b>0 with a≠b if and only if α1≥1/2, β1≤log[2log(1+2)]/(1-log2), α2≥5/7, and β2≤log[2log(1+2)], where I(a,b), M(a,b), Q(a,b), and C(a,b) are the identric, Neuman-Sándor, quadratic, and contraharmonic means of a and b, respectively.
format Article
id doaj-art-2cadabbfc97c4dfd88c1d50e2dd7afca
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-2cadabbfc97c4dfd88c1d50e2dd7afca2025-08-20T03:55:00ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/348326348326Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic MeansTie-Hong Zhao0Yu-Ming Chu1Yun-Liang Jiang2Yong-Min Li3Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, ChinaSchool of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, ChinaSchool of Information & Engineering, Huzhou Teachers College, Huzhou 313000, ChinaSchool of Automation, Southeast University, Nanjing 210096, ChinaWe prove that the double inequalities Iα1(a,b)Q1-α1(a,b)<M(a,b)<Iβ1(a,b)Q1-β1(a,b),Iα2(a,b)C1-α2(a,b)<M(a,b)<Iβ2(a,b)C1-β2(a,b) hold for all a,b>0 with a≠b if and only if α1≥1/2, β1≤log[2log(1+2)]/(1-log2), α2≥5/7, and β2≤log[2log(1+2)], where I(a,b), M(a,b), Q(a,b), and C(a,b) are the identric, Neuman-Sándor, quadratic, and contraharmonic means of a and b, respectively.http://dx.doi.org/10.1155/2013/348326
spellingShingle Tie-Hong Zhao
Yu-Ming Chu
Yun-Liang Jiang
Yong-Min Li
Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
Abstract and Applied Analysis
title Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
title_full Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
title_fullStr Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
title_full_unstemmed Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
title_short Best Possible Bounds for Neuman-Sándor Mean by the Identric, Quadratic and Contraharmonic Means
title_sort best possible bounds for neuman sandor mean by the identric quadratic and contraharmonic means
url http://dx.doi.org/10.1155/2013/348326
work_keys_str_mv AT tiehongzhao bestpossibleboundsforneumansandormeanbytheidentricquadraticandcontraharmonicmeans
AT yumingchu bestpossibleboundsforneumansandormeanbytheidentricquadraticandcontraharmonicmeans
AT yunliangjiang bestpossibleboundsforneumansandormeanbytheidentricquadraticandcontraharmonicmeans
AT yongminli bestpossibleboundsforneumansandormeanbytheidentricquadraticandcontraharmonicmeans