Total Positivity of the Cubic Trigonometric Bézier Basis

Within the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parameters λ and μ given in Han et al. (2009) forms an optimal normalized totally positive basis for λ,μ∈(-2,1]. Moreover, we show that for λ=-2 or μ=-2 the basis is not...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuli Han, Yuanpeng Zhu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/198745
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849306713161728000
author Xuli Han
Yuanpeng Zhu
author_facet Xuli Han
Yuanpeng Zhu
author_sort Xuli Han
collection DOAJ
description Within the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parameters λ and μ given in Han et al. (2009) forms an optimal normalized totally positive basis for λ,μ∈(-2,1]. Moreover, we show that for λ=-2 or μ=-2 the basis is not suited for curve design from the blossom point of view. In order to compute the corresponding cubic trigonometric Bézier curves stably and efficiently, we also develop a new corner cutting algorithm.
format Article
id doaj-art-2ca6a1c382924ef183b46d141515c8f4
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-2ca6a1c382924ef183b46d141515c8f42025-08-20T03:55:00ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/198745198745Total Positivity of the Cubic Trigonometric Bézier BasisXuli Han0Yuanpeng Zhu1School of Mathematics and Statistics, Central South University, Changsha 410083, ChinaSchool of Mathematics and Statistics, Central South University, Changsha 410083, ChinaWithin the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parameters λ and μ given in Han et al. (2009) forms an optimal normalized totally positive basis for λ,μ∈(-2,1]. Moreover, we show that for λ=-2 or μ=-2 the basis is not suited for curve design from the blossom point of view. In order to compute the corresponding cubic trigonometric Bézier curves stably and efficiently, we also develop a new corner cutting algorithm.http://dx.doi.org/10.1155/2014/198745
spellingShingle Xuli Han
Yuanpeng Zhu
Total Positivity of the Cubic Trigonometric Bézier Basis
Journal of Applied Mathematics
title Total Positivity of the Cubic Trigonometric Bézier Basis
title_full Total Positivity of the Cubic Trigonometric Bézier Basis
title_fullStr Total Positivity of the Cubic Trigonometric Bézier Basis
title_full_unstemmed Total Positivity of the Cubic Trigonometric Bézier Basis
title_short Total Positivity of the Cubic Trigonometric Bézier Basis
title_sort total positivity of the cubic trigonometric bezier basis
url http://dx.doi.org/10.1155/2014/198745
work_keys_str_mv AT xulihan totalpositivityofthecubictrigonometricbezierbasis
AT yuanpengzhu totalpositivityofthecubictrigonometricbezierbasis