Reducing the Primary Resonance Vibrations of a Cantilever Beam Using a Proportional Fractional-Order Derivative Controller

Many studies aim to suppress vibrations in vibrating dynamic systems, such as bridges, highways, and aircraft. In this study, we scrutinize the primary resonance of a cantilever beam excited by an external force via a proportional fractional-order derivative controller (PFD). The average method is u...

Full description

Saved in:
Bibliographic Details
Main Authors: M.N. Abd El-Salam, Rageh K. Hussein
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1886
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many studies aim to suppress vibrations in vibrating dynamic systems, such as bridges, highways, and aircraft. In this study, we scrutinize the primary resonance of a cantilever beam excited by an external force via a proportional fractional-order derivative controller (PFD). The average method is used to obtain the approximate solution of the vibrating system. The stability of the control system is illustrated using the Routh–Hurwitz criterion. We investigate the performance of some chosen parameters of the studied system to generate response curves. The performance of the linear fractional feedback control is studied at different values of the fractional order.
ISSN:2227-7390