In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor

Abstract The Apelin receptor (APLNR), a class A G-protein coupled receptor, plays a crucial role during cardiovascular development and tumor angiogenesis. To understand its spatiotemporal activity in health and disease is fundamental for the development of drugs to manipulate its activation state. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Lukas Herdt, Hannes Schihada, Michael Kurz, Sebastian Ernst, Jean Eberlein, Peter Kolb, Cornelius Krasel, Moritz Bünemann, Christian S. M. Helker
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-61781-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849764644153982976
author Lukas Herdt
Hannes Schihada
Michael Kurz
Sebastian Ernst
Jean Eberlein
Peter Kolb
Cornelius Krasel
Moritz Bünemann
Christian S. M. Helker
author_facet Lukas Herdt
Hannes Schihada
Michael Kurz
Sebastian Ernst
Jean Eberlein
Peter Kolb
Cornelius Krasel
Moritz Bünemann
Christian S. M. Helker
author_sort Lukas Herdt
collection DOAJ
description Abstract The Apelin receptor (APLNR), a class A G-protein coupled receptor, plays a crucial role during cardiovascular development and tumor angiogenesis. To understand its spatiotemporal activity in health and disease is fundamental for the development of drugs to manipulate its activation state. To obtain this understanding, here we develop a tool box of various APLNR conformation biosensors, based on FRET, BRET and the conformation-sensitive fluorophore circularly permuted GFP (cpGFP), with further focus on its in vivo application. We demonstrate the functionality of our biosensors by pharmacological characterization and signal transduction analysis in vitro. Two APLNR-cpGFP biosensors show superior signal-to-noise ratio and are further analyzed for their in vivo applicability. In zebrafish embryos, APLNR-cpGFP biosensors are able to bind both endogenous ligands, Apelin and Apela, and visualize endogenous Aplnr activity in growing blood vessels. Moreover, we are able to measure an Apelin ligand gradient across cellular distances in vivo. Hence, these APLNR conformation biosensors are powerful tools to resolve the spatiotemporal Apelin signaling activity in health and disease.
format Article
id doaj-art-2c449082f97e4f508005ec2b9812988f
institution DOAJ
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-2c449082f97e4f508005ec2b9812988f2025-08-20T03:05:06ZengNature PortfolioNature Communications2041-17232025-07-0116111510.1038/s41467-025-61781-3In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensorLukas Herdt0Hannes Schihada1Michael Kurz2Sebastian Ernst3Jean Eberlein4Peter Kolb5Cornelius Krasel6Moritz Bünemann7Christian S. M. Helker8Department of Biology, Animal Cell Biology, Marburg UniversityInstitute of Pharmaceutical Chemistry, Faculty of Pharmacy, Marburg UniversityInstitute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Marburg UniversityInstitute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Marburg UniversityDepartment of Biology, Animal Cell Biology, Marburg UniversityInstitute of Pharmaceutical Chemistry, Faculty of Pharmacy, Marburg UniversityInstitute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Marburg UniversityInstitute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Marburg UniversityDepartment of Biology, Animal Cell Biology, Marburg UniversityAbstract The Apelin receptor (APLNR), a class A G-protein coupled receptor, plays a crucial role during cardiovascular development and tumor angiogenesis. To understand its spatiotemporal activity in health and disease is fundamental for the development of drugs to manipulate its activation state. To obtain this understanding, here we develop a tool box of various APLNR conformation biosensors, based on FRET, BRET and the conformation-sensitive fluorophore circularly permuted GFP (cpGFP), with further focus on its in vivo application. We demonstrate the functionality of our biosensors by pharmacological characterization and signal transduction analysis in vitro. Two APLNR-cpGFP biosensors show superior signal-to-noise ratio and are further analyzed for their in vivo applicability. In zebrafish embryos, APLNR-cpGFP biosensors are able to bind both endogenous ligands, Apelin and Apela, and visualize endogenous Aplnr activity in growing blood vessels. Moreover, we are able to measure an Apelin ligand gradient across cellular distances in vivo. Hence, these APLNR conformation biosensors are powerful tools to resolve the spatiotemporal Apelin signaling activity in health and disease.https://doi.org/10.1038/s41467-025-61781-3
spellingShingle Lukas Herdt
Hannes Schihada
Michael Kurz
Sebastian Ernst
Jean Eberlein
Peter Kolb
Cornelius Krasel
Moritz Bünemann
Christian S. M. Helker
In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
Nature Communications
title In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
title_full In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
title_fullStr In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
title_full_unstemmed In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
title_short In vivo measurement of an Apelin gradient with a genetically encoded APLNR conformation biosensor
title_sort in vivo measurement of an apelin gradient with a genetically encoded aplnr conformation biosensor
url https://doi.org/10.1038/s41467-025-61781-3
work_keys_str_mv AT lukasherdt invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT hannesschihada invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT michaelkurz invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT sebastianernst invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT jeaneberlein invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT peterkolb invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT corneliuskrasel invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT moritzbunemann invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor
AT christiansmhelker invivomeasurementofanapelingradientwithageneticallyencodedaplnrconformationbiosensor