On the Stability of Quadratic Functional Equations
Let X,Y be vector spaces and k a fixed positive integer. It is shown that a mapping f(kx+y)+f(kx-y)=2k2f(x)+2f(y) for all x,y∈X if and only if the mapping f:X→Y satisfies f(x+y)+f(x-y)=2f(x)+2f(y) for all x,y∈X. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banac...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2008-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2008/628178 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832567085318799360 |
---|---|
author | Jung Rye Lee Jong Su An Choonkil Park |
author_facet | Jung Rye Lee Jong Su An Choonkil Park |
author_sort | Jung Rye Lee |
collection | DOAJ |
description | Let X,Y be vector spaces and k a fixed positive integer. It is shown that a mapping f(kx+y)+f(kx-y)=2k2f(x)+2f(y) for all x,y∈X if and only if the mapping f:X→Y satisfies f(x+y)+f(x-y)=2f(x)+2f(y) for all x,y∈X. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banach spaces is proven. |
format | Article |
id | doaj-art-2c305513ce404e5ab3928f0821248895 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2008-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-2c305513ce404e5ab3928f08212488952025-02-03T01:02:19ZengWileyAbstract and Applied Analysis1085-33751687-04092008-01-01200810.1155/2008/628178628178On the Stability of Quadratic Functional EquationsJung Rye Lee0Jong Su An1Choonkil Park2Department of Mathematics, Daejin University, Kyeonggi 487-711, South KoreaDepartment of Mathematics Education, Pusan National University, Pusan 609-735, South KoreaDepartment of Mathematics, Hanyang University, Seoul 133-791, South KoreaLet X,Y be vector spaces and k a fixed positive integer. It is shown that a mapping f(kx+y)+f(kx-y)=2k2f(x)+2f(y) for all x,y∈X if and only if the mapping f:X→Y satisfies f(x+y)+f(x-y)=2f(x)+2f(y) for all x,y∈X. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banach spaces is proven.http://dx.doi.org/10.1155/2008/628178 |
spellingShingle | Jung Rye Lee Jong Su An Choonkil Park On the Stability of Quadratic Functional Equations Abstract and Applied Analysis |
title | On the Stability of Quadratic Functional Equations |
title_full | On the Stability of Quadratic Functional Equations |
title_fullStr | On the Stability of Quadratic Functional Equations |
title_full_unstemmed | On the Stability of Quadratic Functional Equations |
title_short | On the Stability of Quadratic Functional Equations |
title_sort | on the stability of quadratic functional equations |
url | http://dx.doi.org/10.1155/2008/628178 |
work_keys_str_mv | AT jungryelee onthestabilityofquadraticfunctionalequations AT jongsuan onthestabilityofquadraticfunctionalequations AT choonkilpark onthestabilityofquadraticfunctionalequations |