Automated Assessment of Quality of Jupyter Notebooks Using Artificial Intelligence and Big Code
We present in this paper an automated method to assess the quality of Jupyter notebooks. The quality of notebooks is assessed in terms of reproducibility and executability. Specifically, we automatically extract a number of expert-defined features for each notebook, perform a feature selection step,...
Saved in:
| Main Authors: | Priti Oli, Rabin Banjade, Lasang Jimba Tamang, Vasile Rus |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2021-04-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Subjects: | |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/128560 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Python-Programmierung und Algorithmen mit Jupyter Notebooks: Ein Praxisbeispiel aus dem Informatikunterricht
by: Joachim Kutzera, et al.
Published: (2025-03-01) -
Interactive Earth system data cube visualization in Jupyter notebooks
by: Maximilian Söchting, et al.
Published: (2025-04-01) -
FAIR Jupyter: A Knowledge Graph Approach to Semantic Sharing and Granular Exploration of a Computational Notebook Reproducibility Dataset
by: Samuel, Sheeba, et al.
Published: (2024-12-01) -
Застосування інтерактивного середовища Jupyter Notebook при проведенні інтегрованих уроків з інформатики та математики
by: Ярослав Крупський, et al.
Published: (2025-05-01) -
HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays
by: Gianmarco Gabrieli, et al.
Published: (2024-03-01)