Feature-Level Fusion Network for Hyperspectral Object Tracking via Mixed Multi-Head Self-Attention Learning

Hyperspectral object tracking has emerged as a promising task in visual object tracking. The rich spectral information within hyperspectral images benefits the accurate tracking in challenging scenarios. The performances of existing hyperspectral object tracking networks are constrained by neglectin...

Full description

Saved in:
Bibliographic Details
Main Authors: Long Gao, Langkun Chen, Yan Jiang, Bobo Xi, Weiying Xie, Yunsong Li
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/6/997
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperspectral object tracking has emerged as a promising task in visual object tracking. The rich spectral information within hyperspectral images benefits the accurate tracking in challenging scenarios. The performances of existing hyperspectral object tracking networks are constrained by neglecting the interactive information among bands within hyperspectral images. Moreover, designing an accurate deep learning-based algorithm for hyperspectral object tracking poses challenges because of the substantial amount of training data required. In order to address these challenges, a new mixed multi-head attention-based feature fusion tracking (MMFT) algorithm for hyperspectral videos is proposed. Firstly, MMFT introduces a feature-level fusion module, mixed multi-head attention feature fusion (MMFF), which fuses false-color features and augments the fused feature with one mixed multi-head attention (MMA) block with interactive information, which increases the representational ability of the features for tracking. Specifically, MMA learns the interactive information across the bands in the false-color images and incorporates the learned interactive information into the fused feature, which is obtained by combining the features of the false-color images. Secondly, a new training procedure is introduced, in which the modules designed for hyperspectral object tracking are first pre-trained on a sufficient amount of modified RGB data to enhance generalization, and then fine-tuned on a limited amount of HS data for task adaption. Extensive experiments verify the effectiveness of MMFT, demonstrating its SOTA performance.
ISSN:2072-4292