Removing the Need for Ground Truth UWB Data Collection: Self-Supervised Ranging Error Correction Using Deep Reinforcement Learning

Indoor positioning using UWB technology has gained interest due to its centimeter-level accuracy potential. However, multipath effects and non-line-of-sight conditions cause ranging errors between anchors and tags. Existing approaches for mitigating these ranging errors rely on collecting large labe...

Full description

Saved in:
Bibliographic Details
Main Authors: Dieter Coppens, Ben van Herbruggen, Adnan Shahid, Eli de Poorter
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Transactions on Machine Learning in Communications and Networking
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10695458/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Indoor positioning using UWB technology has gained interest due to its centimeter-level accuracy potential. However, multipath effects and non-line-of-sight conditions cause ranging errors between anchors and tags. Existing approaches for mitigating these ranging errors rely on collecting large labeled datasets, making them impractical for real-world deployments. This paper proposes a novel self-supervised deep reinforcement learning approach that does not require labeled ground truth data. A reinforcement learning agent uses the channel impulse response as a state and predicts corrections to minimize the error between corrected and estimated ranges. The agent learns, self-supervised, by iteratively improving corrections that are generated by combining the predictability of trajectories with filtering and smoothening. Experiments on real-world UWB measurements demonstrate comparable performance to state-of-the-art supervised methods, overcoming data dependency and lack of generalizability limitations. This makes self-supervised deep reinforcement learning a promising solution for practical and scalable UWB-ranging error correction.
ISSN:2831-316X