FEM of Gas-Assisted Injection Molding Based on 3D Model

The gas-assisted injection molding (GAIM) process is so complicated that increasing reliance has been placed on CAE (Computer Aided Engineering) as a tool for both mold designers and process engineers. In this paper, a 3D theoretical model and numerical scheme is presented to simulate the GAIM proce...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinchao Wang, Tie Geng, Liqun Yan, Yonggang Guo, Lih-Sheng Turng
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Polymer Technology
Online Access:http://dx.doi.org/10.1155/2020/5818606
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The gas-assisted injection molding (GAIM) process is so complicated that increasing reliance has been placed on CAE (Computer Aided Engineering) as a tool for both mold designers and process engineers. In this paper, a 3D theoretical model and numerical scheme is presented to simulate the GAIM process, in which an equal-order velocity-pressure formulation method is employed to eliminate the pressure oscillation. In addition, the whole flow field including the gas and melt regions is calculated using a uniform momentum equation with the viscosity of gas raised to a certain order of magnitude, and a 3D control volume scheme is employed to track the flow front of the melt and gas. Finally, the validity of the model has been tested through case studies and experimental verification.
ISSN:0730-6679
1098-2329