Model Deteksi Tutupan Lahan di Kecamatan Gunungsitoli Menggunakan Algoritma Decision Tree Berbasis Machine Learning

Perkembangan teknologi penginderaan jauh semakin berkembang, integrasi data penginderan jauh dan artificial intelligence-machine learning menjadi pendekatan yang sangat efisien dalam mendeteksi tutupan lahan. Penelitian ini bertujuan untuk untuk membangun model algoritma tutupan lahan menggunakan al...

Full description

Saved in:
Bibliographic Details
Main Authors: Amati Eltriman Hulu, Mizero Alexis
Format: Article
Language:Indonesian
Published: Universitas Dian Nuswantoro 2025-08-01
Series:Techno.Com
Online Access:https://publikasi.dinus.ac.id/index.php/technoc/article/view/12955
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perkembangan teknologi penginderaan jauh semakin berkembang, integrasi data penginderan jauh dan artificial intelligence-machine learning menjadi pendekatan yang sangat efisien dalam mendeteksi tutupan lahan. Penelitian ini bertujuan untuk untuk membangun model algoritma tutupan lahan menggunakan algoritma decision tree. Data yang digunakan yakni Citra PlanetScope NICFI Level 1 yang diturunkan menjadi beberapa indeks spektral yang terdiri atas Normalized Difference Vegetation Index (NDVI), Visible Atmospherically Resistant Index (VARI),  Soil Adjusted Vegetation Index (SAVI), Normalized Difference Water Index (NDWI), dan Green-Red Vegetation Index (GRVI). Untuk mengukur setia variabel digunakan Information Gain, Gini Index, dan Gain Ratio. Hasil penelitian menunjukan bahwa SAVI dan NDVI merupakan variabel yang informatif dalam membangun model. Distribusi tutupan lahan di Kecamatan Gunungsitoli didominasi oleh tutupan hutan. Kata Kunci – Decision Tree, Machine Learning, Tutupan Lahan, Gunungsitoli
ISSN:2356-2579