Path Tracking Control of Agricultural Automatic Navigation Vehicles Based on an Improved Sparrow Search-Pure Pursuit Algorithm
A pure pursuit method based on an improved sparrow search algorithm is proposed to address low path-tracking accuracy of intelligent agricultural machinery in complex farmland environments. Firstly, we construct a function relating speed to look-ahead distance and develop a fitness function based on...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Agriculture |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-0472/15/11/1215 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A pure pursuit method based on an improved sparrow search algorithm is proposed to address low path-tracking accuracy of intelligent agricultural machinery in complex farmland environments. Firstly, we construct a function relating speed to look-ahead distance and develop a fitness function based on the prototype’s speed and pose deviation. Subsequently, an improved sparrow search algorithm (ISSA) is employed to adjust the pure pursuit model’s speed and look-ahead distance dynamically. Finally, improvements are made to the initialization of the original algorithm and the position update method between different populations. Simulation results indicate that the improved sparrow search algorithm exhibits faster convergence speed and better capability to escape local extrema. The real vehicle test results show that the proposed algorithm achieves an average lateral deviation of approximately 3 cm, an average heading deviation below 5°, an average stabilization distance under 5 m, and an average navigation time of around 46 s during path tracking. These results represent reductions of 51.25%, 30.62%, 49.41%, and 10.67%, respectively, compared to the traditional pure pursuit model. Compared to the pure pursuit model that only dynamically adjusts the look-ahead distance, the proposed algorithm shows reductions of 34.11%, 24.96%, 32.13%, and 11.23%, respectively. These metrics demonstrate significant improvements in path-tracking accuracy, pose correction speed, and path-tracking efficiency, indicating that the proposed algorithm can serve as a valuable reference for path-tracking research in complex agricultural environments. |
|---|---|
| ISSN: | 2077-0472 |