Medical Image Encryption Using Chaotic Mechanisms: A Study

Medical clinical images have a larger number of bits, and real-time and robust medical encryption systems with a high security level, a large key space, high unpredictability, better bifurcation behavior, low computational complexity, and good encryption outcomes are significant design challenges. C...

Full description

Saved in:
Bibliographic Details
Main Authors: Chin-Feng Lin, Yan-Xuan Lin, Shun-Hsyung Chang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/7/734
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medical clinical images have a larger number of bits, and real-time and robust medical encryption systems with a high security level, a large key space, high unpredictability, better bifurcation behavior, low computational complexity, and good encryption outcomes are significant design challenges. Chaotic medical image encryption (MIE) has become an important research area in advanced MIE strategies. Chaotic MIE technology can be used in medical image storage systems, cloud-based medical systems, healthcare systems, telemedicine, mHealth, picture archiving and communication systems, digital imaging and communication in medicine, and telehealth. This study focuses on several basic frameworks for chaos-based MIE. Multiple chaotic maps, robust chaos-based techniques, and fast and simple chaotic system designs of chaos-based MIE are demonstrated. The major technical notes, features and effectiveness of chaos-based MIE are investigated for future research directions. The chaotic maps of MIE are illustrated, and security evaluation methods for chaos-based MIE are explored. Design issues in the implementation of chaos-based MIE are demonstrated. The findings can inspire researchers to design an innovative, advanced chaos-based MIE system to better protect MIs against attacks and ensure robust MIE.
ISSN:2306-5354